Bayesian methods for quantitative trait loci mapping based on model selection: approximate analysis using the Bayesian information criterion (original) (raw)

Abstract

We describe an approximate method for the analysis of quantitative trait loci (QTL) based on model selection from multiple regression models with trait values regressed on marker genotypes, using a modification of the easily calculated Bayesian information criterion to estimate the posterior probability of models with various subsets of markers as variables. The BIC-delta criterion, with the parameter delta increasing the penalty for additional variables in a model, is further modified to incorporate prior information, and missing values are handled by multiple imputation. Marginal probabilities for model sizes are calculated, and the posterior probability of nonzero model size is interpreted as the posterior probability of existence of a QTL linked to one or more markers. The method is demonstrated on analysis of associations between wood density and markers on two linkage groups in Pinus radiata. Selection bias, which is the bias that results from using the same data to both select the variables in a model and estimate the coefficients, is shown to be a problem for commonly used non-Bayesian methods for QTL mapping, which do not average over alternative possible models that are consistent with the data.

Full Text

The Full Text of this article is available as a PDF (120.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Churchill G. A., Doerge R. W. Empirical threshold values for quantitative trait mapping. Genetics. 1994 Nov;138(3):963–971. doi: 10.1093/genetics/138.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Haley C. S., Knott S. A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity (Edinb) 1992 Oct;69(4):315–324. doi: 10.1038/hdy.1992.131. [DOI] [PubMed] [Google Scholar]
  3. Heath S. C. Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. Am J Hum Genet. 1997 Sep;61(3):748–760. doi: 10.1086/515506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hoeschele I., Uimari P., Grignola F. E., Zhang Q., Gage K. M. Advances in statistical methods to map quantitative trait loci in outbred populations. Genetics. 1997 Nov;147(3):1445–1457. doi: 10.1093/genetics/147.3.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Melchinger A. E., Utz H. F., Schön C. C. Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics. 1998 May;149(1):383–403. doi: 10.1093/genetics/149.1.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Satagopan J. M., Yandell B. S., Newton M. A., Osborn T. C. A bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics. 1996 Oct;144(2):805–816. doi: 10.1093/genetics/144.2.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Sillanpä M. J., Arjas E. Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data. Genetics. 1998 Mar;148(3):1373–1388. doi: 10.1093/genetics/148.3.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sillanpä M. J., Arjas E. Bayesian mapping of multiple quantitative trait loci from incomplete outbred offspring data. Genetics. 1999 Apr;151(4):1605–1619. doi: 10.1093/genetics/151.4.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Utz HF, Melchinger AE, Schön CC. Bias and Sampling Error of the Estimated Proportion of Genotypic Variance Explained by Quantitative Trait Loci Determined From Experimental Data in Maize Using Cross Validation and Validation With Independent Samples. Genetics. 2000 Apr;154(3):1839–1849. [PMC free article] [PubMed] [Google Scholar]
  11. Visscher P. M., Thompson R., Haley C. S. Confidence intervals in QTL mapping by bootstrapping. Genetics. 1996 Jun;143(2):1013–1020. doi: 10.1093/genetics/143.2.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]