Making (anti)sense of non-coding sequence conservation (original) (raw)

Abstract

A substantial fraction of vertebrate mRNAs contain long conserved blocks in their untranslated regions as well as long blocks without silent changes in their protein coding regions. These conserved blocks are largely comprised of unique sequence within the genome, leaving us with an important puzzle regarding their function. A large body of experimental data shows that these regions are associated with regulation of mRNA stability. Combining this information with the rapidly accumulating data on endogenous antisense transcripts, we propose that the conserved sequences form long perfect duplexes with antisense transcripts. The formation of such duplexes may be essential for recognition by post-transcriptional regulatory systems. The conservation may then be explained by selection against the dominant negative effect of allelic divergence.

Full Text

The Full Text of this article is available as a PDF (58.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Båtshake B., Sundelin J. The mouse genes for the EP1 prostanoid receptor and the PKN protein kinase overlap. Biochem Biophys Res Commun. 1996 Oct 3;227(1):70–76. doi: 10.1006/bbrc.1996.1469. [DOI] [PubMed] [Google Scholar]
  2. Campbell C. E., Huang A., Gurney A. L., Kessler P. M., Hewitt J. A., Williams B. R. Antisense transcripts and protein binding motifs within the Wilms tumour (WT1) locus. Oncogene. 1994 Feb;9(2):583–595. [PubMed] [Google Scholar]
  3. Capaccioli S., Quattrone A., Schiavone N., Calastretti A., Copreni E., Bevilacqua A., Canti G., Gong L., Morelli S., Nicolin A. A bcl-2/IgH antisense transcript deregulates bcl-2 gene expression in human follicular lymphoma t(14;18) cell lines. Oncogene. 1996 Jul 4;13(1):105–115. [PubMed] [Google Scholar]
  4. Chang Y., Spicer D. B., Sonenshein G. E. Effects of IL-3 on promoter usage, attenuation and antisense transcription of the c-myc oncogene in the IL-3-dependent Ba/F3 early pre-B cell line. Oncogene. 1991 Nov;6(11):1979–1982. [PubMed] [Google Scholar]
  5. Delafontaine P., Meng X. P., Ku L., Du J. Regulation of vascular smooth muscle cell insulin-like growth factor I receptors by phosphorothioate oligonucleotides. Effects on cell growth and evidence that sense targeting at the ATG site increases receptor expression. J Biol Chem. 1995 Jun 16;270(24):14383–14388. doi: 10.1074/jbc.270.24.14383. [DOI] [PubMed] [Google Scholar]
  6. Dong B., Xu L., Zhou A., Hassel B. A., Lee X., Torrence P. F., Silverman R. H. Intrinsic molecular activities of the interferon-induced 2-5A-dependent RNase. J Biol Chem. 1994 May 13;269(19):14153–14158. [PubMed] [Google Scholar]
  7. Duret L., Dorkeld F., Gautier C. Strong conservation of non-coding sequences during vertebrates evolution: potential involvement in post-transcriptional regulation of gene expression. Nucleic Acids Res. 1993 May 25;21(10):2315–2322. doi: 10.1093/nar/21.10.2315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ellison J., Buxbaum J., Hood L. Nucleotide sequence of a human immunoglobulin C gamma 4 gene. DNA. 1981;1(1):11–18. doi: 10.1089/dna.1.1981.1.11. [DOI] [PubMed] [Google Scholar]
  9. Fischer G., Kent S. C., Joseph L., Green D. R., Scott D. W. Lymphoma models for B cell activation and tolerance. X. Anti-mu-mediated growth arrest and apoptosis of murine B cell lymphomas is prevented by the stabilization of myc. J Exp Med. 1994 Jan 1;179(1):221–228. doi: 10.1084/jem.179.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fournier S., Rubio M., Delespesse G., Sarfati M. Role for low-affinity receptor for IgE (CD23) in normal and leukemic B-cell proliferation. Blood. 1994 Sep 15;84(6):1881–1886. [PubMed] [Google Scholar]
  11. Hensold J. O., Stratton C. A., Barth D., Galson D. L. Expression of the transcription factor, Spi-1 (PU.1), in differentiating murine erythroleukemia cells Is regulated post-transcriptionally. Evidence for differential stability of transcription factor mRNAs following inducer exposure. J Biol Chem. 1996 Feb 16;271(7):3385–3391. doi: 10.1074/jbc.271.7.3385. [DOI] [PubMed] [Google Scholar]
  12. Hildebrandt M., Nellen W. Differential antisense transcription from the Dictyostelium EB4 gene locus: implications on antisense-mediated regulation of mRNA stability. Cell. 1992 Apr 3;69(1):197–204. doi: 10.1016/0092-8674(92)90130-5. [DOI] [PubMed] [Google Scholar]
  13. Ho V., Acquaviva A., Duh E., Bunn H. F. Use of a marked erythropoietin gene for investigation of its cis-acting elements. J Biol Chem. 1995 Apr 28;270(17):10084–10090. doi: 10.1074/jbc.270.17.10084. [DOI] [PubMed] [Google Scholar]
  14. Hobart P. M., Shen L. P., Crawford R., Pictet R. L., Rutter W. J. Comparison of the nucleic acid sequence of anglerfish and mammalian insulin mRNA's from cloned cDNA's. Science. 1980 Dec 19;210(4476):1360–1363. doi: 10.1126/science.7001633. [DOI] [PubMed] [Google Scholar]
  15. Hsieh-Li H. M., Witte D. P., Weinstein M., Branford W., Li H., Small K., Potter S. S. Hoxa 11 structure, extensive antisense transcription, and function in male and female fertility. Development. 1995 May;121(5):1373–1385. doi: 10.1242/dev.121.5.1373. [DOI] [PubMed] [Google Scholar]
  16. Jacobs B. L., Langland J. O. When two strands are better than one: the mediators and modulators of the cellular responses to double-stranded RNA. Virology. 1996 May 15;219(2):339–349. doi: 10.1006/viro.1996.0259. [DOI] [PubMed] [Google Scholar]
  17. Kimelman D., Kirschner M. W. An antisense mRNA directs the covalent modification of the transcript encoding fibroblast growth factor in Xenopus oocytes. Cell. 1989 Nov 17;59(4):687–696. doi: 10.1016/0092-8674(89)90015-9. [DOI] [PubMed] [Google Scholar]
  18. Knee R. S., Pitcher S. E., Murphy P. R. Basic fibroblast growth factor sense (FGF) and antisense (gfg) RNA transcripts are expressed in unfertilized human oocytes and in differentiated adult tissues. Biochem Biophys Res Commun. 1994 Nov 30;205(1):577–583. doi: 10.1006/bbrc.1994.2704. [DOI] [PubMed] [Google Scholar]
  19. Kumar M., Carmichael G. G. Nuclear antisense RNA induces extensive adenosine modifications and nuclear retention of target transcripts. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3542–3547. doi: 10.1073/pnas.94.8.3542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Laird-Offringa I. A., Elfferich P., van der Eb A. J. Rapid c-myc mRNA degradation does not require (A + U)-rich sequences or complete translation of the mRNA. Nucleic Acids Res. 1991 May 11;19(9):2387–2394. doi: 10.1093/nar/19.9.2387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lee R. C., Feinbaum R. L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993 Dec 3;75(5):843–854. doi: 10.1016/0092-8674(93)90529-y. [DOI] [PubMed] [Google Scholar]
  22. Lee S. B., Esteban M. The interferon-induced double-stranded RNA-activated human p68 protein kinase inhibits the replication of vaccinia virus. Virology. 1993 Apr;193(2):1037–1041. doi: 10.1006/viro.1993.1223. [DOI] [PubMed] [Google Scholar]
  23. Lee W. M., Lin C., Curran T. Activation of the transforming potential of the human fos proto-oncogene requires message stabilization and results in increased amounts of partially modified fos protein. Mol Cell Biol. 1988 Dec;8(12):5521–5527. doi: 10.1128/mcb.8.12.5521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Levy A. P., Levy N. S., Wegner S., Goldberg M. A. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem. 1995 Jun 2;270(22):13333–13340. doi: 10.1074/jbc.270.22.13333. [DOI] [PubMed] [Google Scholar]
  25. Li A. W., Seyoum G., Shiu R. P., Murphy P. R. Expression of the rat BFGF antisense RNA transcript is tissue-specific and developmentally regulated. Mol Cell Endocrinol. 1996 Apr 19;118(1-2):113–123. doi: 10.1016/0303-7207(96)03772-0. [DOI] [PubMed] [Google Scholar]
  26. Malik K. T., Wallace J. I., Ivins S. M., Brown K. W. Identification of an antisense WT1 promoter in intron 1: implications for WT1 gene regulation. Oncogene. 1995 Oct 19;11(8):1589–1595. [PubMed] [Google Scholar]
  27. McGowan K. M., Police S., Winslow J. B., Pekala P. H. Tumor necrosis factor-alpha regulation of glucose transporter (GLUT1) mRNA turnover. Contribution of the 3'-untranslated region of the GLUT1 message. J Biol Chem. 1997 Jan 10;272(2):1331–1337. doi: 10.1074/jbc.272.2.1331. [DOI] [PubMed] [Google Scholar]
  28. McGuinness T., Porteus M. H., Smiga S., Bulfone A., Kingsley C., Qiu M., Liu J. K., Long J. E., Xu D., Rubenstein J. L. Sequence, organization, and transcription of the Dlx-1 and Dlx-2 locus. Genomics. 1996 Aug 1;35(3):473–485. doi: 10.1006/geno.1996.0387. [DOI] [PubMed] [Google Scholar]
  29. McIntyre K. W., Lombard-Gillooly K., Perez J. R., Kunsch C., Sarmiento U. M., Larigan J. D., Landreth K. T., Narayanan R. A sense phosphorothioate oligonucleotide directed to the initiation codon of transcription factor NF-kappa B p65 causes sequence-specific immune stimulation. Antisense Res Dev. 1993 Winter;3(4):309–322. doi: 10.1089/ard.1993.3.309. [DOI] [PubMed] [Google Scholar]
  30. Mechti N., Piechaczyk M., Blanchard J. M., Marty L., Bonnieu A., Jeanteur P., Lebleu B. Transcriptional and post-transcriptional regulation of c-myc expression during the differentiation of murine erythroleukemia Friend cells. Nucleic Acids Res. 1986 Dec 22;14(24):9653–9666. doi: 10.1093/nar/14.24.9653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Melcher T., Maas S., Herb A., Sprengel R., Higuchi M., Seeburg P. H. RED2, a brain-specific member of the RNA-specific adenosine deaminase family. J Biol Chem. 1996 Dec 13;271(50):31795–31798. doi: 10.1074/jbc.271.50.31795. [DOI] [PubMed] [Google Scholar]
  32. Melcher T., Maas S., Herb A., Sprengel R., Seeburg P. H., Higuchi M. A mammalian RNA editing enzyme. Nature. 1996 Feb 1;379(6564):460–464. doi: 10.1038/379460a0. [DOI] [PubMed] [Google Scholar]
  33. Morelli S., Delia D., Capaccioli S., Quattrone A., Schiavone N., Bevilacqua A., Tomasini S., Nicolin A. The antisense bcl-2-IgH transcript is an optimal target for synthetic oligonucleotides. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8150–8155. doi: 10.1073/pnas.94.15.8150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Murashov A. K., Wolgemuth D. J. Sense and antisense transcripts of the developmentally regulated murine hsp70.2 gene are expressed in distinct and only partially overlapping areas in the adult brain. Brain Res Mol Brain Res. 1996 Apr;37(1-2):85–95. doi: 10.1016/0169-328x(95)00288-4. [DOI] [PubMed] [Google Scholar]
  35. Nishikura K., Yoo C., Kim U., Murray J. M., Estes P. A., Cash F. E., Liebhaber S. A. Substrate specificity of the dsRNA unwinding/modifying activity. EMBO J. 1991 Nov;10(11):3523–3532. doi: 10.1002/j.1460-2075.1991.tb04916.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Noguchi M., Miyamoto S., Silverman T. A., Safer B. Characterization of an antisense Inr element in the eIF-2 alpha gene. J Biol Chem. 1994 Nov 18;269(46):29161–29167. [PubMed] [Google Scholar]
  37. Proud C. G. PKR: a new name and new roles. Trends Biochem Sci. 1995 Jun;20(6):241–246. doi: 10.1016/s0968-0004(00)89025-8. [DOI] [PubMed] [Google Scholar]
  38. Rivkin M., Rosen K. M., Villa-Komaroff L. Identification of an antisense transcript from the IGF-II locus in mouse. Mol Reprod Dev. 1993 Aug;35(4):394–397. doi: 10.1002/mrd.1080350413. [DOI] [PubMed] [Google Scholar]
  39. Ross J. Control of messenger RNA stability in higher eukaryotes. Trends Genet. 1996 May;12(5):171–175. doi: 10.1016/0168-9525(96)10016-0. [DOI] [PubMed] [Google Scholar]
  40. Roy N., Laflamme G., Raymond V. 5' untranslated sequences modulate rapid mRNA degradation mediated by 3' AU-rich element in v-/c-fos recombinants. Nucleic Acids Res. 1992 Nov 11;20(21):5753–5762. doi: 10.1093/nar/20.21.5753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Shaw G., Kamen R. A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell. 1986 Aug 29;46(5):659–667. doi: 10.1016/0092-8674(86)90341-7. [DOI] [PubMed] [Google Scholar]
  42. Shetty S., Kumar A., Idell S. Posttranscriptional regulation of urokinase receptor mRNA: identification of a novel urokinase receptor mRNA binding protein in human mesothelioma cells. Mol Cell Biol. 1997 Mar;17(3):1075–1083. doi: 10.1128/mcb.17.3.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Shima D. T., Deutsch U., D'Amore P. A. Hypoxic induction of vascular endothelial growth factor (VEGF) in human epithelial cells is mediated by increases in mRNA stability. FEBS Lett. 1995 Aug 21;370(3):203–208. doi: 10.1016/0014-5793(95)00831-s. [DOI] [PubMed] [Google Scholar]
  44. Silverman R. H. Fascination with 2-5A-dependent RNase: a unique enzyme that functions in interferon action. J Interferon Res. 1994 Jun;14(3):101–104. doi: 10.1089/jir.1994.14.101. [DOI] [PubMed] [Google Scholar]
  45. Silverman T. A., Noguchi M., Safer B. Role of sequences within the first intron in the regulation of expression of eukaryotic initiation factor 2 alpha. J Biol Chem. 1992 May 15;267(14):9738–9742. [PubMed] [Google Scholar]
  46. Taylor E. R., Seleiro E. A., Brickell P. M. Identification of antisense transcripts of the chicken insulin-like growth factor-II gene. J Mol Endocrinol. 1991 Oct;7(2):145–154. doi: 10.1677/jme.0.0070145. [DOI] [PubMed] [Google Scholar]
  47. Tsai K. C., Cansino V. V., Kohn D. T., Neve R. L., Perrone-Bizzozero N. I. Post-transcriptional regulation of the GAP-43 gene by specific sequences in the 3' untranslated region of the mRNA. J Neurosci. 1997 Mar 15;17(6):1950–1958. doi: 10.1523/JNEUROSCI.17-06-01950.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Volk R., Köster M., Pöting A., Hartmann L., Knöchel W. An antisense transcript from the Xenopus laevis bFGF gene coding for an evolutionarily conserved 24 kd protein. EMBO J. 1989 Oct;8(10):2983–2988. doi: 10.1002/j.1460-2075.1989.tb08448.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wagner E. G., Simons R. W. Antisense RNA control in bacteria, phages, and plasmids. Annu Rev Microbiol. 1994;48:713–742. doi: 10.1146/annurev.mi.48.100194.003433. [DOI] [PubMed] [Google Scholar]
  50. Wellington C. L., Greenberg M. E., Belasco J. G. The destabilizing elements in the coding region of c-fos mRNA are recognized as RNA. Mol Cell Biol. 1993 Aug;13(8):5034–5042. doi: 10.1128/mcb.13.8.5034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wisdom R., Lee W. The protein-coding region of c-myc mRNA contains a sequence that specifies rapid mRNA turnover and induction by protein synthesis inhibitors. Genes Dev. 1991 Feb;5(2):232–243. doi: 10.1101/gad.5.2.232. [DOI] [PubMed] [Google Scholar]
  52. Yaffe D., Nudel U., Mayer Y., Neuman S. Highly conserved sequences in the 3' untranslated region of mRNAs coding for homologous proteins in distantly related species. Nucleic Acids Res. 1985 May 24;13(10):3723–3737. doi: 10.1093/nar/13.10.3723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Zubiaga A. M., Belasco J. G., Greenberg M. E. The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol Cell Biol. 1995 Apr;15(4):2219–2230. doi: 10.1128/mcb.15.4.2219. [DOI] [PMC free article] [PubMed] [Google Scholar]