Interaction of minor groove binding ligands with long AT tracts (original) (raw)

Abstract

We have used quantitative DNase I footprinting to examine the ability of distamycin and Hoechst 33258 to discriminate between different arrangements of AT residues, using synthetic DNA fragments containing multiple blocks of (A/T)6or (A/T)10in identical sequence environments. Previous studies have shown that these ligands bind less well to (A/T)4sites containing TpA steps. We find that in (A/T)6tracts distamycin shows little discrimination between the various sites, binding approximately 2-fold stronger to TAATTA than (TA)3, T3A3and GAATTC. In contrast, Hoechst 33258 binds approximately 20-fold more tightly to GAATTC and TAATTA than T3A3and (TA)3. Hydroxyl radical footprinting reveals that both ligands bind in similar locations at the centre of each AT tract. At (A/T)10sites distamycin binds with similar affinity to T5A5, (TA)5and AATT, though bands in the centre of (TA)5are protected at approximately 50-fold lower concentration than those towards the edges. Hoechst 33258 shows a similar pattern of preference, with strong binding to AATT, T5A5and the centre of (TA)5. Hydroxyl radical footprinting reveals that at low concentrations both ligands bind at the centre of (TA)5and A5T5, while at higher concentrations ligand molecules bind to each end of the (A/T)10tracts. At T5A5two ligand molecules bind at either end of the site, even at the lowest ligand concentration, consistent with the suggestion that these compounds avoid the TpA step. Similar DNase I footprinting experiments with a DNA fragment containing T n (n = 3-6) tracts reveals that both ligands bind in the order T3< T4 << T5 = T6.

Full Text

The Full Text of this article is available as a PDF (433.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abu-Daya A., Brown P. M., Fox K. R. DNA sequence preferences of several AT-selective minor groove binding ligands. Nucleic Acids Res. 1995 Sep 11;23(17):3385–3392. doi: 10.1093/nar/23.17.3385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balendiran K., Rao S. T., Sekharudu C. Y., Zon G., Sundaralingam M. X-ray structures of the B-DNA dodecamer d(CGCGTTAACGCG) with an inverted central tetranucleotide and its netropsin complex. Acta Crystallogr D Biol Crystallogr. 1995 Mar 1;51(Pt 2):190–198. doi: 10.1107/S0907444994010759. [DOI] [PubMed] [Google Scholar]
  3. Burkhoff A. M., Tullius T. D. The unusual conformation adopted by the adenine tracts in kinetoplast DNA. Cell. 1987 Mar 27;48(6):935–943. doi: 10.1016/0092-8674(87)90702-1. [DOI] [PubMed] [Google Scholar]
  4. Carrondo M. A., Coll M., Aymami J., Wang A. H., van der Marel G. A., van Boom J. H., Rich A. Binding of a Hoechst dye to d(CGCGATATCGCG) and its influence on the conformation of the DNA fragment. Biochemistry. 1989 Sep 19;28(19):7849–7859. doi: 10.1021/bi00445a047. [DOI] [PubMed] [Google Scholar]
  5. Churchill M. E., Hayes J. J., Tullius T. D. Detection of drug binding to DNA by hydroxyl radical footprinting. Relationship of distamycin binding sites to DNA structure and positioned nucleosomes on 5S RNA genes of Xenopus. Biochemistry. 1990 Jun 26;29(25):6043–6050. doi: 10.1021/bi00477a023. [DOI] [PubMed] [Google Scholar]
  6. Coll M., Aymami J., van der Marel G. A., van Boom J. H., Rich A., Wang A. H. Molecular structure of the netropsin-d(CGCGATATCGCG) complex: DNA conformation in an alternating AT segment. Biochemistry. 1989 Jan 10;28(1):310–320. doi: 10.1021/bi00427a042. [DOI] [PubMed] [Google Scholar]
  7. Coll M., Frederick C. A., Wang A. H., Rich A. A bifurcated hydrogen-bonded conformation in the d(A.T) base pairs of the DNA dodecamer d(CGCAAATTTGCG) and its complex with distamycin. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8385–8389. doi: 10.1073/pnas.84.23.8385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Embrey K. J., Searle M. S., Craik D. J. Interaction of Hoechst 33258 with the minor groove of the A + T-rich DNA duplex d(GGTAATTACC)2 studied in solution by NMR spectroscopy. Eur J Biochem. 1993 Feb 1;211(3):437–447. doi: 10.1111/j.1432-1033.1993.tb17569.x. [DOI] [PubMed] [Google Scholar]
  9. Fox K. R., Waring M. J. DNA structural variations produced by actinomycin and distamycin as revealed by DNAase I footprinting. Nucleic Acids Res. 1984 Dec 21;12(24):9271–9285. doi: 10.1093/nar/12.24.9271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Geierstanger B. H., Wemmer D. E. Complexes of the minor groove of DNA. Annu Rev Biophys Biomol Struct. 1995;24:463–493. doi: 10.1146/annurev.bb.24.060195.002335. [DOI] [PubMed] [Google Scholar]
  11. Harshman K. D., Dervan P. B. Molecular recognition of B-DNA by Hoechst 33258. Nucleic Acids Res. 1985 Jul 11;13(13):4825–4835. doi: 10.1093/nar/13.13.4825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kopka M. L., Yoon C., Goodsell D., Pjura P., Dickerson R. E. Binding of an antitumor drug to DNA, Netropsin and C-G-C-G-A-A-T-T-BrC-G-C-G. J Mol Biol. 1985 Jun 25;183(4):553–563. doi: 10.1016/0022-2836(85)90171-8. [DOI] [PubMed] [Google Scholar]
  13. Kopka M. L., Yoon C., Goodsell D., Pjura P., Dickerson R. E. The molecular origin of DNA-drug specificity in netropsin and distamycin. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1376–1380. doi: 10.1073/pnas.82.5.1376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Loontiens F. G., Regenfuss P., Zechel A., Dumortier L., Clegg R. M. Binding characteristics of Hoechst 33258 with calf thymus DNA, poly[d(A-T)], and d(CCGGAATTCCGG): multiple stoichiometries and determination of tight binding with a wide spectrum of site affinities. Biochemistry. 1990 Sep 25;29(38):9029–9039. doi: 10.1021/bi00490a021. [DOI] [PubMed] [Google Scholar]
  15. Murray V., Martin R. F. Sequence specificity of 125I-labelled Hoechst 33258 damage in six closely related DNA sequences. J Mol Biol. 1988 Sep 5;203(1):63–73. doi: 10.1016/0022-2836(88)90091-5. [DOI] [PubMed] [Google Scholar]
  16. Murray V., Martin R. F. Ultraviolet light-induced cleavage of DNA in the presence of iodoHoechst 33258: the sequence specificity of the reaction. Nucleic Acids Res. 1994 Feb 11;22(3):506–513. doi: 10.1093/nar/22.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pelton J. G., Wemmer D. E. Structural characterization of a 2:1 distamycin A.d(CGCAAATTGGC) complex by two-dimensional NMR. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5723–5727. doi: 10.1073/pnas.86.15.5723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pelton J. G., Wemmer D. E. Structure and dynamics of distamycin A with d(CGCAAATTGGC):d(GCCAATTTGCG) at low drug:DNA ratios. J Biomol Struct Dyn. 1990 Aug;8(1):81–97. doi: 10.1080/07391102.1990.10507791. [DOI] [PubMed] [Google Scholar]
  19. Portugal J., Waring M. J. Assignment of DNA binding sites for 4',6-diamidine-2-phenylindole and bisbenzimide (Hoechst 33258). A comparative footprinting study. Biochim Biophys Acta. 1988 Feb 28;949(2):158–168. doi: 10.1016/0167-4781(88)90079-6. [DOI] [PubMed] [Google Scholar]
  20. Portugal J., Waring M. J. Comparison of binding sites in DNA for berenil, netropsin and distamycin. A footprinting study. Eur J Biochem. 1987 Sep 1;167(2):281–289. doi: 10.1111/j.1432-1033.1987.tb13334.x. [DOI] [PubMed] [Google Scholar]
  21. Portugal J., Waring M. J. Hydroxyl radical footprinting of the sequence-selective binding of netropsin and distamycin to DNA. FEBS Lett. 1987 Dec 10;225(1-2):195–200. doi: 10.1016/0014-5793(87)81156-0. [DOI] [PubMed] [Google Scholar]
  22. Rentzeperis D., Marky L. A., Dwyer T. J., Geierstanger B. H., Pelton J. G., Wemmer D. E. Interaction of minor groove ligands to an AAATT/AATTT site: correlation of thermodynamic characterization and solution structure. Biochemistry. 1995 Mar 7;34(9):2937–2945. doi: 10.1021/bi00009a025. [DOI] [PubMed] [Google Scholar]
  23. Tabernero L., Bella J., Alemán C. Hydrogen bond geometry in DNA-minor groove binding drug complexes. Nucleic Acids Res. 1996 Sep 1;24(17):3458–3466. doi: 10.1093/nar/24.17.3458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Van Dyke M. W., Dervan P. B. Footprinting with MPE.Fe(II). Complementary-strand analyses of distamycin- and actinomycin-binding sites on heterogeneous DNA. Cold Spring Harb Symp Quant Biol. 1983;47(Pt 1):347–353. doi: 10.1101/sqb.1983.047.01.040. [DOI] [PubMed] [Google Scholar]
  25. Van Dyke M. W., Hertzberg R. P., Dervan P. B. Map of distamycin, netropsin, and actinomycin binding sites on heterogeneous DNA: DNA cleavage-inhibition patterns with methidiumpropyl-EDTA.Fe(II). Proc Natl Acad Sci U S A. 1982 Sep;79(18):5470–5474. doi: 10.1073/pnas.79.18.5470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ward B., Rehfuss R., Goodisman J., Dabrowiak J. C. Determination of netropsin-DNA binding constants from footprinting data. Biochemistry. 1988 Feb 23;27(4):1198–1205. doi: 10.1021/bi00404a020. [DOI] [PubMed] [Google Scholar]
  27. Zimmer C., Marck C., Schneider C., Guschlbauer W. Influence of nucleotide sequence on dA.dT-specific binding of Netropsin to double stranded DNA. Nucleic Acids Res. 1979 Jun 25;6(8):2831–2837. doi: 10.1093/nar/6.8.2831. [DOI] [PMC free article] [PubMed] [Google Scholar]