Molecular analysis of highly enriched populations of T-cell-depleted monocytes (original) (raw)

Abstract

CD4+ T lymphocytes and monocytes/macrophages are important components of the immune system. Blood monocytes are usually targeted for studies of the human macrophage lineage cells because of their accessibility through blood sampling. Most separation techniques currently available to obtain human monocytes either require large volumes of blood or do not yield a monocyte fraction sufficiently depleted of other cell types. We have developed a simple strategy to isolate a highly enriched population of monocytes from small volumes (< 6 ml) of peripheral blood by using an anti-CD14 monoclonal antibody and magnetic microspheres. Yields of monocytes ranged from 75 to 80% of CD14+ cells in peripheral blood. CD4+ T cells were subsequently selected from the monocyte-depleted peripheral blood by using an anti-CD4 monoclonal antibody and immunomagnetic beads. The effectiveness of immunomagnetic selection to yield a monocyte population highly depleted of T cells was analyzed by using a sensitive molecular strategy based on PCR amplification and detection of T-cell receptor (TCR) gene rearrangements. The relative frequency of rearranged TCRs within the monocyte population was compared with the frequency of rearranged TCRs within the CD4+ T-cell fraction from the same individual. Molecular analysis indicated that a viable monocyte population which contains fewer than 2% residual T lymphocytes can be consistently selected from small aliquots of blood.

Full Text

The Full Text of this article is available as a PDF (886.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Calvo F., Martin P. M., Jabrane N., De Cremoux P., Magdelenat H. Human breast cancer cells share antigens with the myeloid monocyte lineage. Br J Cancer. 1987 Jul;56(1):15–19. doi: 10.1038/bjc.1987.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. De Mulder P. H., Wessels J. M., Rosenbrand D. A., Smeulders J. B., Wagener D. J., Haanen C. Monocyte purification with counterflow centrifugation monitored by continuous flow cytometry. J Immunol Methods. 1981;47(1):31–38. doi: 10.1016/0022-1759(81)90254-4. [DOI] [PubMed] [Google Scholar]
  3. Gee A. P., Lee C., Sleasman J. W., Madden M., Ugelstad J., Barrett D. J. T lymphocyte depletion of human peripheral blood and bone marrow using monoclonal antibodies and magnetic microspheres. Bone Marrow Transplant. 1987 Aug;2(2):155–163. [PubMed] [Google Scholar]
  4. Grimes H. L., Szente B. E., Goodenow M. M. C-ski cDNAs are encoded by eight exons, six of which are closely linked within the chicken genome. Nucleic Acids Res. 1992 Apr 11;20(7):1511–1516. doi: 10.1093/nar/20.7.1511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grunewald J., Janson C. H., Wigzell H. Biased expression of individual T cell receptor V gene segments in CD4+ and CD8+ human peripheral blood T lymphocytes. Eur J Immunol. 1991 Mar;21(3):819–822. doi: 10.1002/eji.1830210342. [DOI] [PubMed] [Google Scholar]
  6. Haziot A., Chen S., Ferrero E., Low M. G., Silber R., Goyert S. M. The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage. J Immunol. 1988 Jul 15;141(2):547–552. [PubMed] [Google Scholar]
  7. Holtrop S., Rijke-Schilder G. P., Tamboer W. P., Koene R. A., Tax W. J. Removal of monocytes from cell suspensions with anti-CD14 antibody and carbonyl-iron, using Fc gamma R-dependent accessory function as a sensitive measure of monocyte presence. J Immunol Methods. 1992 Dec 8;156(2):217–222. doi: 10.1016/0022-1759(92)90028-r. [DOI] [PubMed] [Google Scholar]
  8. Lea T., Smeland E., Funderud S., Vartdal F., Davies C., Beiske K., Ugelstad J. Characterization of human mononuclear cells after positive selection with immunomagnetic particles. Scand J Immunol. 1986 Apr;23(4):509–519. doi: 10.1111/j.1365-3083.1986.tb03083.x. [DOI] [PubMed] [Google Scholar]
  9. Ramakrishnan N. S., Grunewald J., Janson C. H., Wigzell H. Nearly identical T-cell receptor V-gene usage at birth in two cohorts of distinctly different ethnic origin: influence of environment in the final maturation in the adult. Scand J Immunol. 1992 Jul;36(1):71–78. doi: 10.1111/j.1365-3083.1992.tb02942.x. [DOI] [PubMed] [Google Scholar]
  10. Rasmussen A. M., Smeland E. B., Erikstein B. K., Caignault L., Funderud S. A new method for detachment of Dynabeads from positively selected B lymphocytes. J Immunol Methods. 1992 Feb 5;146(2):195–202. doi: 10.1016/0022-1759(92)90228-l. [DOI] [PubMed] [Google Scholar]
  11. SCHERER W. F., SYVERTON J. T., GEY G. O. Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med. 1953 May;97(5):695–710. doi: 10.1084/jem.97.5.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Schütt C., Ringel B., Nausch M., Bazil V., Horejsí V., Neels P., Walzel H., Jonas L., Siegl E., Friemel H. Human monocyte activation induced by an anti-CD14 monoclonal antibody. Immunol Lett. 1988 Dec;19(4):321–327. doi: 10.1016/0165-2478(88)90162-9. [DOI] [PubMed] [Google Scholar]
  13. Simmons D. L., Tan S., Tenen D. G., Nicholson-Weller A., Seed B. Monocyte antigen CD14 is a phospholipid anchored membrane protein. Blood. 1989 Jan;73(1):284–289. [PubMed] [Google Scholar]
  14. Sleasman J. W., Harville T. O., White G. B., George J. F., Barrett D. J., Goodenow M. M. Arrested rearrangement of TCR V beta genes in thymocytes from children with X-linked severe combined immunodeficiency disease. J Immunol. 1994 Jul 1;153(1):442–448. [PubMed] [Google Scholar]
  15. Sleasman J. W., Henderson M., Barrett D. J. Con A-induced suppressor cell function depends on the activation of the CD4+CD45RA inducer T cell subpopulation. Cell Immunol. 1991 Apr 1;133(2):367–378. doi: 10.1016/0008-8749(91)90111-n. [DOI] [PubMed] [Google Scholar]
  16. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  17. Strominger J. L. Developmental biology of T cell receptors. Science. 1989 May 26;244(4907):943–950. doi: 10.1126/science.2658058. [DOI] [PubMed] [Google Scholar]
  18. Wahl L. M., Katona I. M., Wilder R. L., Winter C. C., Haraoui B., Scher I., Wahl S. M. Isolation of human mononuclear cell subsets by counterflow centrifugal elutriation (CCE). I. Characterization of B-lymphocyte-, T-lymphocyte-, and monocyte-enriched fractions by flow cytometric analysis. Cell Immunol. 1984 May;85(2):373–383. doi: 10.1016/0008-8749(84)90251-x. [DOI] [PubMed] [Google Scholar]
  19. Weiss A., Wiskocil R. L., Stobo J. D. The role of T3 surface molecules in the activation of human T cells: a two-stimulus requirement for IL 2 production reflects events occurring at a pre-translational level. J Immunol. 1984 Jul;133(1):123–128. [PubMed] [Google Scholar]
  20. Wright S. D., Ramos R. A., Tobias P. S., Ulevitch R. J., Mathison J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990 Sep 21;249(4975):1431–1433. doi: 10.1126/science.1698311. [DOI] [PubMed] [Google Scholar]
  21. Wysocki L. J., Sato V. L. "Panning" for lymphocytes: a method for cell selection. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2844–2848. doi: 10.1073/pnas.75.6.2844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ziegler-Heitbrock H. W., Passlick B., Flieger D. The monoclonal antimonocyte antibody My4 stains B lymphocytes and two distinct monocyte subsets in human peripheral blood. Hybridoma. 1988 Dec;7(6):521–527. doi: 10.1089/hyb.1988.7.521. [DOI] [PubMed] [Google Scholar]
  23. Ziegler-Heitbrock H. W., Ulevitch R. J. CD14: cell surface receptor and differentiation marker. Immunol Today. 1993 Mar;14(3):121–125. doi: 10.1016/0167-5699(93)90212-4. [DOI] [PubMed] [Google Scholar]
  24. von Boehmer H. Developmental biology of T cells in T cell-receptor transgenic mice. Annu Rev Immunol. 1990;8:531–556. doi: 10.1146/annurev.iy.08.040190.002531. [DOI] [PubMed] [Google Scholar]