Gene 19 of plasmid R1 is required for both efficient conjugative DNA transfer and bacteriophage R17 infection (original) (raw)

Abstract

F-like plasmids require a number of genes for conjugation, including tra operon genes and genes traM and traJ, which lie outside the tra operon. We now establish that a gene in the "leading region," gene 19, provides an important function during conjugation and RNA phage infection. Mutational inactivation of gene 19 on plasmid R1-16 by introduction of two nonpolar stop codons results in a 10-fold decrease in the conjugation frequency. Furthermore, infection studies with the male-specific bacteriophage R17 revealed that the phage is not able to form clear plaques in Escherichia coli cells carrying an R1-16 plasmid with the defective copy of gene 19. The total number of cells infected by phage R17 is reduced by a factor of 10. Both the conjugation- and infection-attenuated phenotypes caused by the defective gene 19 can be complemented in trans by introducing gene 19 alleles encoding the wild-type protein. Restoration of the normal phenotypes is also possible by introduction of the pilT gene encoded by the unrelated IncI plasmid R64. Our functional studies and similarities of protein 19 to proteins encoded by other DNA transfer systems, as well as the presence of a conserved motif in all of these proteins (indicative for a putative muramidase activity) suggest that protein 19 of plasmid R1 facilitates the passage of DNA during conjugation and entry of RNA during phage infection.

Full Text

The Full Text of this article is available as a PDF (905.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allaoui A., Ménard R., Sansonetti P. J., Parsot C. Characterization of the Shigella flexneri ipgD and ipgF genes, which are located in the proximal part of the mxi locus. Infect Immun. 1993 May;61(5):1707–1714. doi: 10.1128/iai.61.5.1707-1714.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berger B. R., Christie P. J. Genetic complementation analysis of the Agrobacterium tumefaciens virB operon: virB2 through virB11 are essential virulence genes. J Bacteriol. 1994 Jun;176(12):3646–3660. doi: 10.1128/jb.176.12.3646-3660.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blum P., Holzschu D., Kwan H. S., Riggs D., Artz S. Gene replacement and retrieval with recombinant M13mp bacteriophages. J Bacteriol. 1989 Jan;171(1):538–546. doi: 10.1128/jb.171.1.538-546.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davies J. Inactivation of antibiotics and the dissemination of resistance genes. Science. 1994 Apr 15;264(5157):375–382. doi: 10.1126/science.8153624. [DOI] [PubMed] [Google Scholar]
  6. Dijkstra B. W., Thunnissen A. M. 'Holy' proteins. II: The soluble lytic transglycosylase. Curr Opin Struct Biol. 1994 Dec;4(6):810–813. doi: 10.1016/0959-440x(94)90261-5. [DOI] [PubMed] [Google Scholar]
  7. Engel H., Kazemier B., Keck W. Murein-metabolizing enzymes from Escherichia coli: sequence analysis and controlled overexpression of the slt gene, which encodes the soluble lytic transglycosylase. J Bacteriol. 1991 Nov;173(21):6773–6782. doi: 10.1128/jb.173.21.6773-6782.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fee B. E., Dempsey W. B. Nucleotide sequence of gene X of antibiotic resistance plasmid R100. Nucleic Acids Res. 1988 May 25;16(10):4726–4726. doi: 10.1093/nar/16.10.4726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frost L. S., Ippen-Ihler K., Skurray R. A. Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiol Rev. 1994 Jun;58(2):162–210. doi: 10.1128/mr.58.2.162-210.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frost L. S., Paranchych W., Willetts N. S. DNA sequence of the F traALE region that includes the gene for F pilin. J Bacteriol. 1984 Oct;160(1):395–401. doi: 10.1128/jb.160.1.395-401.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fürste J. P., Pansegrau W., Frank R., Blöcker H., Scholz P., Bagdasarian M., Lanka E. Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene. 1986;48(1):119–131. doi: 10.1016/0378-1119(86)90358-6. [DOI] [PubMed] [Google Scholar]
  12. Graus-Göldner A., Graus H., Schlacher T., Högenauer G. The sequences of genes bordering oriT in the enterotoxin plasmid P307: comparison with the sequences of plasmids F and R1. Plasmid. 1990 Sep;24(2):119–131. doi: 10.1016/0147-619x(90)90014-4. [DOI] [PubMed] [Google Scholar]
  13. Graus H., Hödl A., Wallner P., Högenauer G. The sequence of the leading region of the resistance plasmid R1. Nucleic Acids Res. 1990 Feb 25;18(4):1046–1046. doi: 10.1093/nar/18.4.1046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jalajakumari M. B., Guidolin A., Buhk H. J., Manning P. A., Ham L. M., Hodgson A. L., Cheah K. C., Skurray R. A. Surface exclusion genes traS and traT of the F sex factor of Escherichia coli K-12. Determination of the nucleotide sequence and promoter and terminator activities. J Mol Biol. 1987 Nov 5;198(1):1–11. doi: 10.1016/0022-2836(87)90452-9. [DOI] [PubMed] [Google Scholar]
  15. Kado C. I. Promiscuous DNA transfer system of Agrobacterium tumefaciens: role of the virB operon in sex pilus assembly and synthesis. Mol Microbiol. 1994 Apr;12(1):17–22. doi: 10.1111/j.1365-2958.1994.tb00990.x. [DOI] [PubMed] [Google Scholar]
  16. Koonin E. V., Rudd K. E. A conserved domain in putative bacterial and bacteriophage transglycosylases. Trends Biochem Sci. 1994 Mar;19(3):106–107. doi: 10.1016/0968-0004(94)90201-1. [DOI] [PubMed] [Google Scholar]
  17. Koraimann G., Högenauer G. A stable core region of the tra operon mRNA of plasmid R1-19. Nucleic Acids Res. 1989 Feb 25;17(4):1283–1298. doi: 10.1093/nar/17.4.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Koraimann G., Schroller C., Graus H., Angerer D., Teferle K., Högenauer G. Expression of gene 19 of the conjugative plasmid R1 is controlled by RNase III. Mol Microbiol. 1993 Aug;9(4):717–727. doi: 10.1111/j.1365-2958.1993.tb01732.x. [DOI] [PubMed] [Google Scholar]
  19. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lessl M., Balzer D., Pansegrau W., Lanka E. Sequence similarities between the RP4 Tra2 and the Ti VirB region strongly support the conjugation model for T-DNA transfer. J Biol Chem. 1992 Oct 5;267(28):20471–20480. [PubMed] [Google Scholar]
  21. Loh S., Cram D., Skurray R. Nucleotide sequence of the leading region adjacent to the origin of transfer on plasmid F and its conservation among conjugative plasmids. Mol Gen Genet. 1989 Oct;219(1-2):177–186. doi: 10.1007/BF00261174. [DOI] [PubMed] [Google Scholar]
  22. Meynell E., Datta N. Mutant drug resistant factors of high transmissibility. Nature. 1967 May 27;214(5091):885–887. doi: 10.1038/214885a0. [DOI] [PubMed] [Google Scholar]
  23. Minton N. P. Improved plasmid vectors for the isolation of translational lac gene fusions. Gene. 1984 Nov;31(1-3):269–273. doi: 10.1016/0378-1119(84)90220-8. [DOI] [PubMed] [Google Scholar]
  24. Norrander J., Kempe T., Messing J. Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene. 1983 Dec;26(1):101–106. doi: 10.1016/0378-1119(83)90040-9. [DOI] [PubMed] [Google Scholar]
  25. O'Donovan M. C., Buckland P. R., McGuffin P. Simultaneous quantification of several mRNA species by solution hybridisation with oligonucleotides. Nucleic Acids Res. 1991 Jun 25;19(12):3466–3466. doi: 10.1093/nar/19.12.3466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pohlman R. F., Genetti H. D., Winans S. C. Common ancestry between IncN conjugal transfer genes and macromolecular export systems of plant and animal pathogens. Mol Microbiol. 1994 Nov;14(4):655–668. doi: 10.1111/j.1365-2958.1994.tb01304.x. [DOI] [PubMed] [Google Scholar]
  27. Ray A., Skurray R. Cloning and polypeptide analysis of the leading region in F plasmid DNA transfer. Plasmid. 1983 May;9(3):262–272. doi: 10.1016/0147-619x(83)90004-5. [DOI] [PubMed] [Google Scholar]
  28. Schuler G. D., Altschul S. F., Lipman D. J. A workbench for multiple alignment construction and analysis. Proteins. 1991;9(3):180–190. doi: 10.1002/prot.340090304. [DOI] [PubMed] [Google Scholar]
  29. Thompson D. V., Melchers L. S., Idler K. B., Schilperoort R. A., Hooykaas P. J. Analysis of the complete nucleotide sequence of the Agrobacterium tumefaciens virB operon. Nucleic Acids Res. 1988 May 25;16(10):4621–4636. doi: 10.1093/nar/16.10.4621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Thompson R., Taylor L., Kelly K., Everett R., Willetts N. The F plasmid origin of transfer: DNA sequence of wild-type and mutant origins and location of origin-specific nicks. EMBO J. 1984 May;3(5):1175–1180. doi: 10.1002/j.1460-2075.1984.tb01947.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Thompson T. L., Centola M. B., Deonier R. C. Location of the nick at oriT of the F plasmid. J Mol Biol. 1989 Jun 5;207(3):505–512. doi: 10.1016/0022-2836(89)90460-9. [DOI] [PubMed] [Google Scholar]
  32. Thorstenson Y. R., Kuldau G. A., Zambryski P. C. Subcellular localization of seven VirB proteins of Agrobacterium tumefaciens: implications for the formation of a T-DNA transport structure. J Bacteriol. 1993 Aug;175(16):5233–5241. doi: 10.1128/jb.175.16.5233-5241.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Winans S. C., Walker G. C. Conjugal transfer system of the IncN plasmid pKM101. J Bacteriol. 1985 Jan;161(1):402–410. doi: 10.1128/jb.161.1.402-410.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Womble D. D., Rownd R. H. Genetic and physical map of plasmid NR1: comparison with other IncFII antibiotic resistance plasmids. Microbiol Rev. 1988 Dec;52(4):433–451. doi: 10.1128/mr.52.4.433-451.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]