Packaging signals in alphaviruses (original) (raw)

Abstract

Alphaviruses synthesize large amounts of both genomic and subgenomic RNA in infected cells, but usually only the genomic RNA is packaged. This implies the existence of an encapsidation or packaging signal which would be responsible for selectivity. Previously, we had identified a region of the Sindbis virus genome that interacts specifically with the viral capsid protein. This 132-nucleotide (nt) fragment lies within the coding region of the nsP1 gene (nt 945 to 1076). We proposed that the 132-mer is important for capsid recognition and initiates the formation of the viral nucleocapsid. To study the encapsidation of Sindbis virus RNAs in infected cells, we designed a new assay that uses the self-replicating Sindbis virus genomes (replicons) which lack the viral structural protein genes and contain heterologous sequences under the control of the subgenomic RNA promoter. These replicons can be packaged into viral particles by using defective helper RNAs that contain the structural protein genes (P. Bredenbeek, I. Frolov, C. M. Rice, and S. Schlesinger, J. Virol. 67:6439-6446, 1993). Insertion of the 132-mer into the subgenomic RNA significantly increased the packaging of this RNA into viral particles. We have used this assay and defective helpers that contain the structural protein genes of Ross River virus (RRV) to investigate the location of the encapsidation signal in the RRV genome. Our results show that there are several fragments that could act as packaging signals. They are all located in a different region of the genome than the signal for the Sindbis virus genome. For RRV, the strongest packaging signal lies between nt 2761 and 3062 in the nsP2 gene. This is the same region that was proposed to contain the packaging signal for Semliki Forest virus genomic RNA.

Full Text

The Full Text of this article is available as a PDF (621.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bredenbeek P. J., Frolov I., Rice C. M., Schlesinger S. Sindbis virus expression vectors: packaging of RNA replicons by using defective helper RNAs. J Virol. 1993 Nov;67(11):6439–6446. doi: 10.1128/jvi.67.11.6439-6446.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Geigenmüller-Gnirke U., Nitschko H., Schlesinger S. Deletion analysis of the capsid protein of Sindbis virus: identification of the RNA binding region. J Virol. 1993 Mar;67(3):1620–1626. doi: 10.1128/jvi.67.3.1620-1626.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Jalanko A., Söderlund H. The repeated regions of Semliki Forest virus defective-inferfering RNA interferes with the encapsidation process of the standard virus. Virology. 1985 Mar;141(2):257–266. doi: 10.1016/0042-6822(85)90256-9. [DOI] [PubMed] [Google Scholar]
  4. Kuhn R. J., Niesters H. G., Hong Z., Strauss J. H. Infectious RNA transcripts from Ross River virus cDNA clones and the construction and characterization of defined chimeras with Sindbis virus. Virology. 1991 Jun;182(2):430–441. doi: 10.1016/0042-6822(91)90584-x. [DOI] [PubMed] [Google Scholar]
  5. Lehtovaara P., Söderlund H., Keränen S., Pettersson R. F., Käriäinen L. 18S defective interfering RNA of Semliki Forest virus contains a triplicated linear repeat. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5353–5357. doi: 10.1073/pnas.78.9.5353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lehtovaara P., Söderlund H., Keränen S., Pettersson R. F., Käriäinen L. Extreme ends of the genome are conserved and rearranged in the defective interfering RNAs of Semliki Forest virus. J Mol Biol. 1982 Apr 25;156(4):731–748. doi: 10.1016/0022-2836(82)90139-5. [DOI] [PubMed] [Google Scholar]
  7. Monroe S. S., Schlesinger S. RNAs from two independently isolated defective interfering particles of Sindbis virus contain a cellular tRNA sequence at their 5' ends. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3279–3283. doi: 10.1073/pnas.80.11.3279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Owen K. E., Kuhn R. J. Identification of a region in the Sindbis virus nucleocapsid protein that is involved in specificity of RNA encapsidation. J Virol. 1996 May;70(5):2757–2763. doi: 10.1128/jvi.70.5.2757-2763.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rice C. M., Levis R., Strauss J. H., Huang H. V. Production of infectious RNA transcripts from Sindbis virus cDNA clones: mapping of lethal mutations, rescue of a temperature-sensitive marker, and in vitro mutagenesis to generate defined mutants. J Virol. 1987 Dec;61(12):3809–3819. doi: 10.1128/jvi.61.12.3809-3819.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rümenapf T., Strauss E. G., Strauss J. H. Subgenomic mRNA of Aura alphavirus is packaged into virions. J Virol. 1994 Jan;68(1):56–62. doi: 10.1128/jvi.68.1.56-62.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Strauss J. H., Strauss E. G. The alphaviruses: gene expression, replication, and evolution. Microbiol Rev. 1994 Sep;58(3):491–562. doi: 10.1128/mr.58.3.491-562.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Thomson M., Dimmock N. J. Common sequence elements in structurally unrelated genomes of defective interfering Semliki Forest virus. Virology. 1994 Mar;199(2):354–365. doi: 10.1006/viro.1994.1133. [DOI] [PubMed] [Google Scholar]
  13. Weiss B., Geigenmüller-Gnirke U., Schlesinger S. Interactions between Sindbis virus RNAs and a 68 amino acid derivative of the viral capsid protein further defines the capsid binding site. Nucleic Acids Res. 1994 Mar 11;22(5):780–786. doi: 10.1093/nar/22.5.780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Weiss B., Nitschko H., Ghattas I., Wright R., Schlesinger S. Evidence for specificity in the encapsidation of Sindbis virus RNAs. J Virol. 1989 Dec;63(12):5310–5318. doi: 10.1128/jvi.63.12.5310-5318.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wengler G., Boege U., Wengler G., Bischoff H., Wahn K. The core protein of the alphavirus Sindbis virus assembles into core-like nucleoproteins with the viral genome RNA and with other single-stranded nucleic acids in vitro. Virology. 1982 Apr 30;118(2):401–410. doi: 10.1016/0042-6822(82)90359-2. [DOI] [PubMed] [Google Scholar]
  16. Wengler G., Wengler G., Boege U., Wahn K. Establishment and analysis of a system which allows assembly and disassembly of alphavirus core-like particles under physiological conditions in vitro. Virology. 1984 Jan 30;132(2):401–412. doi: 10.1016/0042-6822(84)90045-x. [DOI] [PubMed] [Google Scholar]