Intercellular calcium signaling via gap junctions in glioma cells (original) (raw)

Abstract

Calcium signaling in C6 glioma cells in culture was examined with digital fluorescence video microscopy. C6 cells express low levels of the gap junction protein connexin43 and have correspondingly weak gap junctional communication as evidenced by dye coupling (Naus, C. C. G., J. F. Bechberger, S. Caveney, and J. X. Wilson. 1991. Neurosci. Lett. 126:33-36). Transfection of C6 cells with the cDNA encoding connexin43 resulted in clones with increased expression of connexin43 mRNA and protein and increased dye coupling, as well as markedly reduced rates of proliferation (Zhu, D., S. Caveney, G. M. Kidder, and C. C. Naus. 1991. Proc. Natl. Acad. Sci. USA. 88:1883-1887; Naus, C. C. G., D. Zhu, S. Todd, and G. M. Kidder. 1992. Cell Mol. Neurobiol. 12:163-175). Mechanical stimulation of a single cell in a culture of non-transfected C6 cells induced a wave of increased intracellular calcium concentration ([Ca2+]i) that showed little or no communication to adjacent cells. By contrast, mechanical stimulation of a single cell in cultures of C6 clones expressing transfected connexin43 cDNA induced a Ca2+ wave that was communicated to multiple surrounding cells, and the extent of communication was proportional to the level of expression of the connexin43 cDNA. These results provide direct evidence that intercellular Ca2+ signaling occurs via gap junctions. Ca2+ signaling through gap junctions may provide a means for the coordinated regulation of cellular function, including cell growth and differentiation.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes S., Bui Q. Modulation of calcium-activated chloride current via pH-induced changes of calcium channel properties in cone photoreceptors. J Neurosci. 1991 Dec;11(12):4015–4023. doi: 10.1523/JNEUROSCI.11-12-04015.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bennett M. V., Barrio L. C., Bargiello T. A., Spray D. C., Hertzberg E., Sáez J. C. Gap junctions: new tools, new answers, new questions. Neuron. 1991 Mar;6(3):305–320. doi: 10.1016/0896-6273(91)90241-q. [DOI] [PubMed] [Google Scholar]
  3. Brehm P., Lechleiter J., Smith S., Dunlap K. Intercellular signaling as visualized by endogenous calcium-dependent bioluminescence. Neuron. 1989 Aug;3(2):191–198. doi: 10.1016/0896-6273(89)90032-9. [DOI] [PubMed] [Google Scholar]
  4. Chang D., Kushman N. L., Dawson D. C. Intracellular pH regulates basolateral K+ and Cl- conductances in colonic epithelial cells by modulating Ca2+ activation. J Gen Physiol. 1991 Jul;98(1):183–196. doi: 10.1085/jgp.98.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Charles A. C., Merrill J. E., Dirksen E. R., Sanderson M. J. Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron. 1991 Jun;6(6):983–992. doi: 10.1016/0896-6273(91)90238-u. [DOI] [PubMed] [Google Scholar]
  6. Cornell-Bell A. H., Finkbeiner S. M. Ca2+ waves in astrocytes. Cell Calcium. 1991 Feb-Mar;12(2-3):185–204. doi: 10.1016/0143-4160(91)90020-f. [DOI] [PubMed] [Google Scholar]
  7. Cornell-Bell A. H., Finkbeiner S. M., Cooper M. S., Smith S. J. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science. 1990 Jan 26;247(4941):470–473. doi: 10.1126/science.1967852. [DOI] [PubMed] [Google Scholar]
  8. Dermietzel R., Hertberg E. L., Kessler J. A., Spray D. C. Gap junctions between cultured astrocytes: immunocytochemical, molecular, and electrophysiological analysis. J Neurosci. 1991 May;11(5):1421–1432. doi: 10.1523/JNEUROSCI.11-05-01421.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dunlap K., Takeda K., Brehm P. Activation of a calcium-dependent photoprotein by chemical signalling through gap junctions. Nature. 1987 Jan 1;325(6099):60–62. doi: 10.1038/325060a0. [DOI] [PubMed] [Google Scholar]
  10. Gutnick M. J., Connors B. W., Ransom B. R. Dye-coupling between glial cells in the guinea pig neocortical slice. Brain Res. 1981 Jun 1;213(2):486–492. doi: 10.1016/0006-8993(81)90259-6. [DOI] [PubMed] [Google Scholar]
  11. Gylfe E., Grapengiesser E., Hellman B. Propagation of cytoplasmic Ca2+ oscillations in clusters of pancreatic beta-cells exposed to glucose. Cell Calcium. 1991 Feb-Mar;12(2-3):229–240. doi: 10.1016/0143-4160(91)90023-8. [DOI] [PubMed] [Google Scholar]
  12. Hakii H., Fujiki H., Suganuma M., Nakayasu M., Tahira T., Sugimura T., Scheuer P. J., Christensen S. B. Thapsigargin, a histamine secretagogue, is a non-12-O-tetradecanoylphorbol-13-acetate (TPA) type tumor promoter in two-stage mouse skin carcinogenesis. J Cancer Res Clin Oncol. 1986;111(3):177–181. doi: 10.1007/BF00389230. [DOI] [PubMed] [Google Scholar]
  13. Haworth R. A., Goknur A. B., Berkoff H. A. Inhibition of Na-Ca exchange by general anesthetics. Circ Res. 1989 Oct;65(4):1021–1028. doi: 10.1161/01.res.65.4.1021. [DOI] [PubMed] [Google Scholar]
  14. Kettenmann H., Orkand R. K., Schachner M. Coupling among identified cells in mammalian nervous system cultures. J Neurosci. 1983 Mar;3(3):506–516. doi: 10.1523/JNEUROSCI.03-03-00506.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Means A. R., Rasmussen C. D. Calcium, calmodulin and cell proliferation. Cell Calcium. 1988 Dec;9(5-6):313–319. doi: 10.1016/0143-4160(88)90012-7. [DOI] [PubMed] [Google Scholar]
  16. Micevych P. E., Abelson L. Distribution of mRNAs coding for liver and heart gap junction proteins in the rat central nervous system. J Comp Neurol. 1991 Mar 1;305(1):96–118. doi: 10.1002/cne.903050110. [DOI] [PubMed] [Google Scholar]
  17. Mody I., Tanelian D. L., MacIver M. B. Halothane enhances tonic neuronal inhibition by elevating intracellular calcium. Brain Res. 1991 Jan 11;538(2):319–323. doi: 10.1016/0006-8993(91)90447-4. [DOI] [PubMed] [Google Scholar]
  18. Naus C. C., Bechberger J. F., Caveney S., Wilson J. X. Expression of gap junction genes in astrocytes and C6 glioma cells. Neurosci Lett. 1991 May 13;126(1):33–36. doi: 10.1016/0304-3940(91)90364-y. [DOI] [PubMed] [Google Scholar]
  19. Sandberg K., Bor M., Ji H., Markwick A., Millan M. A., Catt K. J. Angiotensin II-induced calcium mobilization in oocytes by signal transfer through gap junctions. Science. 1990 Jul 20;249(4966):298–301. doi: 10.1126/science.2374929. [DOI] [PubMed] [Google Scholar]
  20. Sanderson M. J., Charles A. C., Dirksen E. R. Mechanical stimulation and intercellular communication increases intracellular Ca2+ in epithelial cells. Cell Regul. 1990 Jul;1(8):585–596. doi: 10.1091/mbc.1.8.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sanderson M. J., Dirksen E. R. Mechanosensitivity of cultured ciliated cells from the mammalian respiratory tract: implications for the regulation of mucociliary transport. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7302–7306. doi: 10.1073/pnas.83.19.7302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sill J. C., Uhl C., Eskuri S., Van Dyke R., Tarara J. Halothane inhibits agonist-induced inositol phosphate and Ca2+ signaling in A7r5 cultured vascular smooth muscle cells. Mol Pharmacol. 1991 Dec;40(6):1006–1013. [PubMed] [Google Scholar]
  23. Sáez J. C., Connor J. A., Spray D. C., Bennett M. V. Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-trisphosphate, and to calcium ions. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2708–2712. doi: 10.1073/pnas.86.8.2708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Thastrup O., Cullen P. J., Drøbak B. K., Hanley M. R., Dawson A. P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2466–2470. doi: 10.1073/pnas.87.7.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Whitaker M., Patel R. Calcium and cell cycle control. Development. 1990 Apr;108(4):525–542. doi: 10.1242/dev.108.4.525. [DOI] [PubMed] [Google Scholar]
  26. Zhu D., Caveney S., Kidder G. M., Naus C. C. Transfection of C6 glioma cells with connexin 43 cDNA: analysis of expression, intercellular coupling, and cell proliferation. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1883–1887. doi: 10.1073/pnas.88.5.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]