Recombinant respiratory syncytial virus from which the entire SH gene has been deleted grows efficiently in cell culture and exhibits site-specific attenuation in the respiratory tract of the mouse (original) (raw)

Abstract

The small hydrophobic protein SH of human respiratory syncytial virus (RSV) is a short transmembrane surface protein of unknown function. A full-length cDNA of RSV strain A2 (subgroup A) antigenomic RNA was modified such that the entire SH gene, including the transcription signals and the complete mRNA-encoding sequence, was deleted and replaced by a synthetic intergenic region. This reduced the length of the antigenome by 398 nucleotides and ablated expression of 1 of the 10 RSV mRNAs. Recombinant virus containing this engineered deletion was recovered, and the absence of the SH gene was confirmed by reverse transcription in conjunction with PCR. Northern blot analysis of intracellular RNAs and gel electrophoresis of labeled intracellular proteins confirmed the lack of expression of the SH mRNA and protein. The absence of the SH gene did not noticeably affect RNA replication, but two effects on transcription were noted. First, synthesis of the G, F, and M2 mRNAs was increased, presumably due to their being one position closer to the promoter in the gene order. Second, transcription of genes downstream of the engineered site exhibited a steeper gradient of polarity. On monolayers of HEp-2 cells, the SH-minus virus produced syncytia which were at least equivalent in size to those of the wild type and produced plaques which were 70% larger. Furthermore, the SH-minus virus grew somewhat better (up to 12.6-fold) than wild-type recombinant RSV in certain cell lines. While the function of the SH protein remains to be determined, it seems to be completely dispensable for growth in tissue culture and fusion function. When inoculated intranasally into mice, the SH-minus virus resembled the wild-type recombinant virus in its efficiency of replication in the lungs, whereas it replicated 10-fold less efficiently in the upper respiratory tract. In mice, the SH-minus and wild-type recombinant viruses were similarly immunogenic and effective in inducing resistance to virus challenge.

Full Text

The Full Text of this article is available as a PDF (945.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson K., King A. M., Lerch R. A., Wertz G. W. Polylactosaminoglycan modification of the respiratory syncytial virus small hydrophobic (SH) protein: a conserved feature among human and bovine respiratory syncytial viruses. Virology. 1992 Nov;191(1):417–430. doi: 10.1016/0042-6822(92)90203-2. [DOI] [PubMed] [Google Scholar]
  2. Bukreyev A. A., Belanov E. F., Blinov V. M., Netesov S. V. Complete nucleotide sequences of Marburg virus genes 5 and 6 encoding VP30 and VP24 proteins. Biochem Mol Biol Int. 1995 Mar;35(3):605–613. [PubMed] [Google Scholar]
  3. Bukreyev A., Camargo E., Collins P. L. Recovery of infectious respiratory syncytial virus expressing an additional, foreign gene. J Virol. 1996 Oct;70(10):6634–6641. doi: 10.1128/jvi.70.10.6634-6641.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carrasco L. Modification of membrane permeability by animal viruses. Adv Virus Res. 1995;45:61–112. doi: 10.1016/S0065-3527(08)60058-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Collins P. L., Hill M. G., Camargo E., Grosfeld H., Chanock R. M., Murphy B. R. Production of infectious human respiratory syncytial virus from cloned cDNA confirms an essential role for the transcription elongation factor from the 5' proximal open reading frame of the M2 mRNA in gene expression and provides a capability for vaccine development. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11563–11567. doi: 10.1073/pnas.92.25.11563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Collins P. L., Hill M. G., Cristina J., Grosfeld H. Transcription elongation factor of respiratory syncytial virus, a nonsegmented negative-strand RNA virus. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):81–85. doi: 10.1073/pnas.93.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Collins P. L., Huang Y. T., Wertz G. W. Identification of a tenth mRNA of respiratory syncytial virus and assignment of polypeptides to the 10 viral genes. J Virol. 1984 Feb;49(2):572–578. doi: 10.1128/jvi.49.2.572-578.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Collins P. L., Mottet G. Membrane orientation and oligomerization of the small hydrophobic protein of human respiratory syncytial virus. J Gen Virol. 1993 Jul;74(Pt 7):1445–1450. doi: 10.1099/0022-1317-74-7-1445. [DOI] [PubMed] [Google Scholar]
  9. Collins P. L., Olmsted R. A., Johnson P. R. The small hydrophobic protein of human respiratory syncytial virus: comparison between antigenic subgroups A and B. J Gen Virol. 1990 Jul;71(Pt 7):1571–1576. doi: 10.1099/0022-1317-71-7-1571. [DOI] [PubMed] [Google Scholar]
  10. Collins P. L., Wertz G. W. cDNA cloning and transcriptional mapping of nine polyadenylylated RNAs encoded by the genome of human respiratory syncytial virus. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3208–3212. doi: 10.1073/pnas.80.11.3208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Conzelmann K. K. Genetic manipulation of non-segmented negative-strand RNA viruses. J Gen Virol. 1996 Mar;77(Pt 3):381–389. doi: 10.1099/0022-1317-77-3-381. [DOI] [PubMed] [Google Scholar]
  12. Delenda C., Hausmann S., Garcin D., Kolakofsky D. Normal cellular replication of Sendai virus without the trans-frame, nonstructural V protein. Virology. 1997 Feb 3;228(1):55–62. doi: 10.1006/viro.1996.8354. [DOI] [PubMed] [Google Scholar]
  13. Elango N., Kövamees J., Varsanyi T. M., Norrby E. mRNA sequence and deduced amino acid sequence of the mumps virus small hydrophobic protein gene. J Virol. 1989 Mar;63(3):1413–1415. doi: 10.1128/jvi.63.3.1413-1415.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Firestone C. Y., Whitehead S. S., Collins P. L., Murphy B. R., Crowe J. E., Jr Nucleotide sequence analysis of the respiratory syncytial virus subgroup A cold-passaged (cp) temperature sensitive (ts) cpts-248/404 live attenuated virus vaccine candidate. Virology. 1996 Nov 15;225(2):419–422. doi: 10.1006/viro.1996.0618. [DOI] [PubMed] [Google Scholar]
  15. Grosfeld H., Hill M. G., Collins P. L. RNA replication by respiratory syncytial virus (RSV) is directed by the N, P, and L proteins; transcription also occurs under these conditions but requires RSV superinfection for efficient synthesis of full-length mRNA. J Virol. 1995 Sep;69(9):5677–5686. doi: 10.1128/jvi.69.9.5677-5686.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Heminway B. R., Yu Y., Tanaka Y., Perrine K. G., Gustafson E., Bernstein J. M., Galinski M. S. Analysis of respiratory syncytial virus F, G, and SH proteins in cell fusion. Virology. 1994 May 1;200(2):801–805. doi: 10.1006/viro.1994.1245. [DOI] [PubMed] [Google Scholar]
  17. Hiebert S. W., Paterson R. G., Lamb R. A. Identification and predicted sequence of a previously unrecognized small hydrophobic protein, SH, of the paramyxovirus simian virus 5. J Virol. 1985 Sep;55(3):744–751. doi: 10.1128/jvi.55.3.744-751.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Johnson P. R., Collins P. L. The A and B subgroups of human respiratory syncytial virus: comparison of intergenic and gene-overlap sequences. J Gen Virol. 1988 Nov;69(Pt 11):2901–2906. doi: 10.1099/0022-1317-69-11-2901. [DOI] [PubMed] [Google Scholar]
  19. Johnson P. R., Spriggs M. K., Olmsted R. A., Collins P. L. The G glycoprotein of human respiratory syncytial viruses of subgroups A and B: extensive sequence divergence between antigenically related proteins. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5625–5629. doi: 10.1073/pnas.84.16.5625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kato A., Kiyotani K., Sakai Y., Yoshida T., Nagai Y. The paramyxovirus, Sendai virus, V protein encodes a luxury function required for viral pathogenesis. EMBO J. 1997 Feb 3;16(3):578–587. doi: 10.1093/emboj/16.3.578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kretzschmar E., Peluso R., Schnell M. J., Whitt M. A., Rose J. K. Normal replication of vesicular stomatitis virus without C proteins. Virology. 1996 Feb 15;216(2):309–316. doi: 10.1006/viro.1996.0066. [DOI] [PubMed] [Google Scholar]
  22. Kuo L., Fearns R., Collins P. L. The structurally diverse intergenic regions of respiratory syncytial virus do not modulate sequential transcription by a dicistronic minigenome. J Virol. 1996 Sep;70(9):6143–6150. doi: 10.1128/jvi.70.9.6143-6150.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kuo L., Grosfeld H., Cristina J., Hill M. G., Collins P. L. Effects of mutations in the gene-start and gene-end sequence motifs on transcription of monocistronic and dicistronic minigenomes of respiratory syncytial virus. J Virol. 1996 Oct;70(10):6892–6901. doi: 10.1128/jvi.70.10.6892-6901.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lamb R. A., Pinto L. H. Do Vpu and Vpr of human immunodeficiency virus type 1 and NB of influenza B virus have ion channel activities in the viral life cycles? Virology. 1997 Mar 3;229(1):1–11. doi: 10.1006/viro.1997.8451. [DOI] [PubMed] [Google Scholar]
  25. Levine S., Klaiber-Franco R., Paradiso P. R. Demonstration that glycoprotein G is the attachment protein of respiratory syncytial virus. J Gen Virol. 1987 Sep;68(Pt 9):2521–2524. doi: 10.1099/0022-1317-68-9-2521. [DOI] [PubMed] [Google Scholar]
  26. Ling R., Easton A. J., Pringle C. R. Sequence analysis of the 22K, SH and G genes of turkey rhinotracheitis virus and their intergenic regions reveals a gene order different from that of other pneumoviruses. J Gen Virol. 1992 Jul;73(Pt 7):1709–1715. doi: 10.1099/0022-1317-73-7-1709. [DOI] [PubMed] [Google Scholar]
  27. Murphy B. R., Sotnikov A. V., Lawrence L. A., Banks S. M., Prince G. A. Enhanced pulmonary histopathology is observed in cotton rats immunized with formalin-inactivated respiratory syncytial virus (RSV) or purified F glycoprotein and challenged with RSV 3-6 months after immunization. Vaccine. 1990 Oct;8(5):497–502. doi: 10.1016/0264-410x(90)90253-i. [DOI] [PubMed] [Google Scholar]
  28. Olmsted R. A., Collins P. L. The 1A protein of respiratory syncytial virus is an integral membrane protein present as multiple, structurally distinct species. J Virol. 1989 May;63(5):2019–2029. doi: 10.1128/jvi.63.5.2019-2029.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Radecke F., Billeter M. A. The nonstructural C protein is not essential for multiplication of Edmonston B strain measles virus in cultured cells. Virology. 1996 Mar 1;217(1):418–421. doi: 10.1006/viro.1996.0134. [DOI] [PubMed] [Google Scholar]
  30. Samal S. K., Zamora M. Nucleotide sequence analysis of a matrix and small hydrophobic protein dicistronic mRNA of bovine respiratory syncytial virus demonstrates extensive sequence divergence of the small hydrophobic protein from that of human respiratory syncytial virus. J Gen Virol. 1991 Jul;72(Pt 7):1715–1720. doi: 10.1099/0022-1317-72-7-1715. [DOI] [PubMed] [Google Scholar]
  31. Schneider H., Kaelin K., Billeter M. A. Recombinant measles viruses defective for RNA editing and V protein synthesis are viable in cultured cells. Virology. 1997 Jan 20;227(2):314–322. doi: 10.1006/viro.1996.8339. [DOI] [PubMed] [Google Scholar]
  32. Schubert U., Ferrer-Montiel A. V., Oblatt-Montal M., Henklein P., Strebel K., Montal M. Identification of an ion channel activity of the Vpu transmembrane domain and its involvement in the regulation of virus release from HIV-1-infected cells. FEBS Lett. 1996 Nov 25;398(1):12–18. doi: 10.1016/s0014-5793(96)01146-5. [DOI] [PubMed] [Google Scholar]
  33. Spriggs M. K., Olmsted R. A., Venkatesan S., Coligan J. E., Collins P. L. Fusion glycoprotein of human parainfluenza virus type 3: nucleotide sequence of the gene, direct identification of the cleavage-activation site, and comparison with other paramyxoviruses. Virology. 1986 Jul 15;152(1):241–251. doi: 10.1016/0042-6822(86)90388-0. [DOI] [PubMed] [Google Scholar]
  34. Takeuchi K., Tanabayashi K., Hishiyama M., Yamada A. The mumps virus SH protein is a membrane protein and not essential for virus growth. Virology. 1996 Nov 1;225(1):156–162. doi: 10.1006/viro.1996.0583. [DOI] [PubMed] [Google Scholar]
  35. The order Mononegavirales. Arch Virol. 1991;117(1-2):137–140. [PubMed] [Google Scholar]
  36. Walsh E. E., Hruska J. Monoclonal antibodies to respiratory syncytial virus proteins: identification of the fusion protein. J Virol. 1983 Jul;47(1):171–177. doi: 10.1128/jvi.47.1.171-177.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wyatt L. S., Moss B., Rozenblatt S. Replication-deficient vaccinia virus encoding bacteriophage T7 RNA polymerase for transient gene expression in mammalian cells. Virology. 1995 Jun 20;210(1):202–205. doi: 10.1006/viro.1995.1332. [DOI] [PubMed] [Google Scholar]