Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3 (original) (raw)

Abstract

Dysregulation of matrix degrading metalloproteinase enzymes (MMPs) leads to increased extracellular matrix turnover, a key event in the local invasion and metastasis of many tumours. The tissue inhibitors of metalloproteinases (TIMPs) limit the activity of MMPs, which suggests their use in gene therapy. We have previously shown that overexpression of TIMP-1, -2 or -3 inhibits vascular smooth muscle and melanoma cell invasion, while TIMP-3 uniquely promotes apoptosis. We have therefore sought to determine whether TIMP-3 can inhibit invasion and promote apoptosis in other cancer cell types. Adenoviral-mediated overexpression of TIMP-3 inhibited invasion of HeLa and HT1080 cells through artificial basement membrane to similar levels as that achieved by TIMP-1 and -2. However, TIMP-3 uniquely promoted cell cycle entry and subsequent death by apoptosis. Apoptosis was confirmed by morphological analysis, terminal dUTP nick end labelling (TUNEL) and flow cytometry. The apoptotic phenotype was mimicked by addition of exogenous recombinant TIMP-3 to uninfected cultures demonstrating that the death signal is initiated extracellularly and that a bystander effect exists. These results show that TIMP-3 inhibits invasion in vitro and promotes apoptosis in cancer cell type of differing origin. This clearly identifies the potential of TIMP-3 for gene therapy of multiple cancer types. © 1999 Cancer Research Campaign

Keywords: tissue inhibitor of metalloproteinase, cancer cell, apoptosis, cell invasion, adenovirus, gene therapy

Full Text

The Full Text of this article is available as a PDF (331.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahonen M., Baker A. H., Kähäri V. M. Adenovirus-mediated gene delivery of tissue inhibitor of metalloproteinases-3 inhibits invasion and induces apoptosis in melanoma cells. Cancer Res. 1998 Jun 1;58(11):2310–2315. [PubMed] [Google Scholar]
  2. Apte S. S., Hayashi K., Seldin M. F., Mattei M. G., Hayashi M., Olsen B. R. Gene encoding a novel murine tissue inhibitor of metalloproteinases (TIMP), TIMP-3, is expressed in developing mouse epithelia, cartilage, and muscle, and is located on mouse chromosome 10. Dev Dyn. 1994 Jul;200(3):177–197. doi: 10.1002/aja.1002000302. [DOI] [PubMed] [Google Scholar]
  3. Baker A. H., Wilkinson G. W., Hembry R. M., Murphy G., Newby A. C. Development of recombinant adenoviruses that drive high level expression of the human metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 and -2 genes: characterization of their infection into rabbit smooth muscle cells and human MCF-7 adenocarcinoma cells. Matrix Biol. 1996 Dec;15(6):383–395. doi: 10.1016/s0945-053x(96)90158-4. [DOI] [PubMed] [Google Scholar]
  4. Baker A. H., Zaltsman A. B., George S. J., Newby A. C. Divergent effects of tissue inhibitor of metalloproteinase-1, -2, or -3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP-3 promotes apoptosis. J Clin Invest. 1998 Mar 15;101(6):1478–1487. doi: 10.1172/JCI1584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bass K. E., Li H., Hawkes S. P., Howard E., Bullen E., Vu T. K., McMaster M., Janatpour M., Fisher S. J. Tissue inhibitor of metalloproteinase-3 expression is upregulated during human cytotrophoblast invasion in vitro. Dev Genet. 1997;21(1):61–67. doi: 10.1002/(SICI)1520-6408(1997)21:1<61::AID-DVG7>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  6. Birkedal-Hansen H., Moore W. G., Bodden M. K., Windsor L. J., Birkedal-Hansen B., DeCarlo A., Engler J. A. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med. 1993;4(2):197–250. doi: 10.1177/10454411930040020401. [DOI] [PubMed] [Google Scholar]
  7. Bode W., Reinemer P., Huber R., Kleine T., Schnierer S., Tschesche H. The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. EMBO J. 1994 Mar 15;13(6):1263–1269. doi: 10.1002/j.1460-2075.1994.tb06378.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Byrne J. A., Tomasetto C., Rouyer N., Bellocq J. P., Rio M. C., Basset P. The tissue inhibitor of metalloproteinases-3 gene in breast carcinoma: identification of multiple polyadenylation sites and a stromal pattern of expression. Mol Med. 1995 May;1(4):418–427. [PMC free article] [PubMed] [Google Scholar]
  9. DeClerck Y. A., Perez N., Shimada H., Boone T. C., Langley K. E., Taylor S. M. Inhibition of invasion and metastasis in cells transfected with an inhibitor of metalloproteinases. Cancer Res. 1992 Feb 1;52(3):701–708. [PubMed] [Google Scholar]
  10. Docherty A. J., Lyons A., Smith B. J., Wright E. M., Stephens P. E., Harris T. J., Murphy G., Reynolds J. J. Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity. Nature. 1985 Nov 7;318(6041):66–69. doi: 10.1038/318066a0. [DOI] [PubMed] [Google Scholar]
  11. Forough R., Koyama N., Hasenstab D., Lea H., Clowes M., Nikkari S. T., Clowes A. W. Overexpression of tissue inhibitor of matrix metalloproteinase-1 inhibits vascular smooth muscle cell functions in vitro and in vivo. Circ Res. 1996 Oct;79(4):812–820. doi: 10.1161/01.res.79.4.812. [DOI] [PubMed] [Google Scholar]
  12. George S. J., Johnson J. L., Angelini G. D., Newby A. C., Baker A. H. Adenovirus-mediated gene transfer of the human TIMP-1 gene inhibits smooth muscle cell migration and neointimal formation in human saphenous vein. Hum Gene Ther. 1998 Apr 10;9(6):867–877. doi: 10.1089/hum.1998.9.6-867. [DOI] [PubMed] [Google Scholar]
  13. Imren S., Kohn D. B., Shimada H., Blavier L., DeClerck Y. A. Overexpression of tissue inhibitor of metalloproteinases-2 retroviral-mediated gene transfer in vivo inhibits tumor growth and invasion. Cancer Res. 1996 Jul 1;56(13):2891–2895. [PubMed] [Google Scholar]
  14. Koop S., Khokha R., Schmidt E. E., MacDonald I. C., Morris V. L., Chambers A. F., Groom A. C. Overexpression of metalloproteinase inhibitor in B16F10 cells does not affect extravasation but reduces tumor growth. Cancer Res. 1994 Sep 1;54(17):4791–4797. [PubMed] [Google Scholar]
  15. Leco K. J., Apte S. S., Taniguchi G. T., Hawkes S. P., Khokha R., Schultz G. A., Edwards D. R. Murine tissue inhibitor of metalloproteinases-4 (Timp-4): cDNA isolation and expression in adult mouse tissues. FEBS Lett. 1997 Jan 20;401(2-3):213–217. doi: 10.1016/s0014-5793(96)01474-3. [DOI] [PubMed] [Google Scholar]
  16. Leco K. J., Khokha R., Pavloff N., Hawkes S. P., Edwards D. R. Tissue inhibitor of metalloproteinases-3 (TIMP-3) is an extracellular matrix-associated protein with a distinctive pattern of expression in mouse cells and tissues. J Biol Chem. 1994 Mar 25;269(12):9352–9360. [PubMed] [Google Scholar]
  17. Low J. A., Johnson M. D., Bone E. A., Dickson R. B. The matrix metalloproteinase inhibitor batimastat (BB-94) retards human breast cancer solid tumor growth but not ascites formation in nude mice. Clin Cancer Res. 1996 Jul;2(7):1207–1214. [PubMed] [Google Scholar]
  18. Montgomery A. M., Mueller B. M., Reisfeld R. A., Taylor S. M., DeClerck Y. A. Effect of tissue inhibitor of the matrix metalloproteinases-2 expression on the growth and spontaneous metastasis of a human melanoma cell line. Cancer Res. 1994 Oct 15;54(20):5467–5473. [PubMed] [Google Scholar]
  19. Murphy G., Willenbrock F., Ward R. V., Cockett M. I., Eaton D., Docherty A. J. The C-terminal domain of 72 kDa gelatinase A is not required for catalysis, but is essential for membrane activation and modulates interactions with tissue inhibitors of metalloproteinases. Biochem J. 1992 May 1;283(Pt 3):637–641. doi: 10.1042/bj2830637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Noël A. C., Callé A., Emonard H. P., Nusgens B. V., Simar L., Foidart J., Lapiere C. M., Foidart J. M. Invasion of reconstituted basement membrane matrix is not correlated to the malignant metastatic cell phenotype. Cancer Res. 1991 Jan 1;51(1):405–414. [PubMed] [Google Scholar]
  21. Nuovo G. J. In situ detection of PCR-amplified metalloproteinase cDNAs, their inhibitors and human papillomavirus transcripts in cervical carcinoma cell lines. Int J Cancer. 1997 Jun 11;71(6):1056–1060. doi: 10.1002/(sici)1097-0215(19970611)71:6<1056::aid-ijc23>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
  22. Sledge G. W., Jr, Qulali M., Goulet R., Bone E. A., Fife R. Effect of matrix metalloproteinase inhibitor batimastat on breast cancer regrowth and metastasis in athymic mice. J Natl Cancer Inst. 1995 Oct 18;87(20):1546–1550. doi: 10.1093/jnci/87.20.1546. [DOI] [PubMed] [Google Scholar]
  23. Smith M. R., Kung H., Durum S. K., Colburn N. H., Sun Y. TIMP-3 induces cell death by stabilizing TNF-alpha receptors on the surface of human colon carcinoma cells. Cytokine. 1997 Oct;9(10):770–780. doi: 10.1006/cyto.1997.0233. [DOI] [PubMed] [Google Scholar]
  24. Stetler-Stevenson W. G., Brown P. D., Onisto M., Levy A. T., Liotta L. A. Tissue inhibitor of metalloproteinases-2 (TIMP-2) mRNA expression in tumor cell lines and human tumor tissues. J Biol Chem. 1990 Aug 15;265(23):13933–13938. [PubMed] [Google Scholar]
  25. Strongin A. Y., Collier I., Bannikov G., Marmer B. L., Grant G. A., Goldberg G. I. Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem. 1995 Mar 10;270(10):5331–5338. doi: 10.1074/jbc.270.10.5331. [DOI] [PubMed] [Google Scholar]
  26. Sun Y., Kim H., Parker M., Stetler-Stevenson W. G., Colburn N. H. Lack of suppression of tumor cell phenotype by overexpression of TIMP-3 in mouse JB6 tumor cells identification of a transfectant with increased tumorigenicity and invasiveness. Anticancer Res. 1996 Jan-Feb;16(1):1–7. [PubMed] [Google Scholar]
  27. Uría J. A., Ferrando A. A., Velasco G., Freije J. M., López-Otín C. Structure and expression in breast tumors of human TIMP-3, a new member of the metalloproteinase inhibitor family. Cancer Res. 1994 Apr 15;54(8):2091–2094. [PubMed] [Google Scholar]
  28. Wang M., Liu Y. E., Greene J., Sheng S., Fuchs A., Rosen E. M., Shi Y. E. Inhibition of tumor growth and metastasis of human breast cancer cells transfected with tissue inhibitor of metalloproteinase 4. Oncogene. 1997 Jun 12;14(23):2767–2774. doi: 10.1038/sj.onc.1201245. [DOI] [PubMed] [Google Scholar]
  29. Wang X., Fu X., Brown P. D., Crimmin M. J., Hoffman R. M. Matrix metalloproteinase inhibitor BB-94 (batimastat) inhibits human colon tumor growth and spread in a patient-like orthotopic model in nude mice. Cancer Res. 1994 Sep 1;54(17):4726–4728. [PubMed] [Google Scholar]
  30. Watanabe M., Takahashi Y., Ohta T., Mai M., Sasaki T., Seiki M. Inhibition of metastasis in human gastric cancer cells transfected with tissue inhibitor of metalloproteinase 1 gene in nude mice. Cancer. 1996 Apr 15;77(8 Suppl):1676–1680. doi: 10.1002/(SICI)1097-0142(19960415)77:8<1676::AID-CNCR38>3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
  31. Watson S. A., Morris T. M., Parsons S. L., Steele R. J., Brown P. D. Therapeutic effect of the matrix metalloproteinase inhibitor, batimastat, in a human colorectal cancer ascites model. Br J Cancer. 1996 Nov;74(9):1354–1358. doi: 10.1038/bjc.1996.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wick M., Bürger C., Brüsselbach S., Lucibello F. C., Müller R. A novel member of human tissue inhibitor of metalloproteinases (TIMP) gene family is regulated during G1 progression, mitogenic stimulation, differentiation, and senescence. J Biol Chem. 1994 Jul 22;269(29):18953–18960. [PubMed] [Google Scholar]
  33. Wilkinson G. W., Akrigg A. Constitutive and enhanced expression from the CMV major IE promoter in a defective adenovirus vector. Nucleic Acids Res. 1992 May 11;20(9):2233–2239. doi: 10.1093/nar/20.9.2233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yang T. T., Hawkes S. P. Role of the 21-kDa protein TIMP-3 in oncogenic transformation of cultured chicken embryo fibroblasts. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10676–10680. doi: 10.1073/pnas.89.22.10676. [DOI] [PMC free article] [PubMed] [Google Scholar]