Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO) (original) (raw)

Abstract

Production and consumption processes in soils contribute to the global cycles of many trace gases (CH4, CO, OCS, H2, N2O, and NO) that are relevant for atmospheric chemistry and climate. Soil microbial processes contribute substantially to the budgets of atmospheric trace gases. The flux of trace gases between soil and atmosphere is usually the result of simultaneously operating production and consumption processes in soil: The relevant processes are not yet proven with absolute certainty, but the following are likely for trace gas consumption: H2 oxidation by abiontic soil enzymes; CO cooxidation by the ammonium monooxygenase of nitrifying bacteria; CH4 oxidation by unknown methanotrophic bacteria that utilize CH4 for growth; OCS hydrolysis by bacteria containing carbonic anhydrase; N2O reduction to N2 by denitrifying bacteria; NO consumption by either reduction to N2O in denitrifiers or oxidation to nitrate in heterotrophic bacteria. Wetland soils, in contrast to upland soils are generally anoxic and thus support the production of trace gases (H2, CO, CH4, N2O, and NO) by anaerobic bacteria such as fermenters, methanogens, acetogens, sulfate reducers, and denitrifiers. Methane is the dominant gaseous product of anaerobic degradation of organic matter and is released into the atmosphere, whereas the other trace gases are only intermediates, which are mostly cycled within the anoxic habitat. A significant percentage of the produced methane is oxidized by methanotrophic bacteria at anoxic-oxic interfaces such as the soil surface and the root surface of aquatic plants that serve as conduits for O2 transport into and CH4 transport out of the wetland soils. The dominant production processes in upland soils are different from those in wetland soils and include H2 production by biological N2 fixation, CO production by chemical decomposition of soil organic matter, and NO and N2O production by nitrification and denitrification. The processes responsible for CH4 production in upland soils are completely unclear, as are the OCS production processes in general. A problem for future research is the attribution of trace gas metabolic processes not only to functional groups of microorganisms but also to particular taxa. Thus, it is completely unclear how important microbial diversity is for the control of trace gas flux at the ecosystem level. However, different microbial communities may be part of the reason for differences in trace gas metabolism, e.g., effects of nitrogen fertilizers on CH4 uptake by soil; decrease of CH4 production with decreasing temperature; or different rates and modes of NO and N2O production in different soils and under different conditions.

Full Text

The Full Text of this article is available as a PDF (589.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamsen A. P., King G. M. Methane consumption in temperate and subarctic forest soils: rates, vertical zonation, and responses to water and nitrogen. Appl Environ Microbiol. 1993 Feb;59(2):485–490. doi: 10.1128/aem.59.2.485-490.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ahring B. K. Methanogenesis in thermophilic biogas reactors. Antonie Van Leeuwenhoek. 1995;67(1):91–102. doi: 10.1007/BF00872197. [DOI] [PubMed] [Google Scholar]
  3. Alperin M. J., Reeburgh W. S. Inhibition experiments on anaerobic methane oxidation. Appl Environ Microbiol. 1985 Oct;50(4):940–945. doi: 10.1128/aem.50.4.940-945.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Amann R. I., Stromley J., Devereux R., Key R., Stahl D. A. Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl Environ Microbiol. 1992 Feb;58(2):614–623. doi: 10.1128/aem.58.2.614-623.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Badger M. R., Price G. D. Carbon Oxysulfide Is an Inhibitor of Both CO(2) and HCO(3) Uptake in the Cyanobacterium Synechococcus PCC7942. Plant Physiol. 1990 Sep;94(1):35–39. doi: 10.1104/pp.94.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bartholomew G. W., Alexander M. Microbial metabolism of carbon monoxide in culture and in soil. Appl Environ Microbiol. 1979 May;37(5):932–937. doi: 10.1128/aem.37.5.932-937.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bazylinski D. A., Soohoo C. K., Hollocher T. C. Growth of Pseudomonas aeruginosa on nitrous oxide. Appl Environ Microbiol. 1986 Jun;51(6):1239–1246. doi: 10.1128/aem.51.6.1239-1246.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bell L. C., Ferguson S. J. Nitric and nitrous oxide reductases are active under aerobic conditions in cells of Thiosphaera pantotropha. Biochem J. 1991 Jan 15;273(Pt 2):423–427. doi: 10.1042/bj2730423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Betlach M. R., Tiedje J. M. Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification. Appl Environ Microbiol. 1981 Dec;42(6):1074–1084. doi: 10.1128/aem.42.6.1074-1084.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bonam D., Ludden P. W. Purification and characterization of carbon monoxide dehydrogenase, a nickel, zinc, iron-sulfur protein, from Rhodospirillum rubrum. J Biol Chem. 1987 Mar 5;262(7):2980–2987. [PubMed] [Google Scholar]
  12. Boone D. R., Johnson R. L., Liu Y. Diffusion of the Interspecies Electron Carriers H(2) and Formate in Methanogenic Ecosystems and Its Implications in the Measurement of K(m) for H(2) or Formate Uptake. Appl Environ Microbiol. 1989 Jul;55(7):1735–1741. doi: 10.1128/aem.55.7.1735-1741.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Breznak J. A. Intestinal microbiota of termites and other xylophagous insects. Annu Rev Microbiol. 1982;36:323–343. doi: 10.1146/annurev.mi.36.100182.001543. [DOI] [PubMed] [Google Scholar]
  14. Bryant M. P., Campbell L. L., Reddy C. A., Crabill M. R. Growth of desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol. 1977 May;33(5):1162–1169. doi: 10.1128/aem.33.5.1162-1169.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Bédard C., Knowles R. Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev. 1989 Mar;53(1):68–84. doi: 10.1128/mr.53.1.68-84.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Christensen P. B., Revsbech N. P., Sand-Jensen K. Microsensor Analysis of Oxygen in the Rhizosphere of the Aquatic Macrophyte Littorella uniflora (L.) Ascherson. Plant Physiol. 1994 Jul;105(3):847–852. doi: 10.1104/pp.105.3.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Cicerone R. J. Changes in stratospheric ozone. Science. 1987 Jul 3;237(4810):35–42. doi: 10.1126/science.237.4810.35. [DOI] [PubMed] [Google Scholar]
  18. Colby J., Dalton H., Whittenbury R. Biological and biochemical aspects of microbial growth on C1 compounds. Annu Rev Microbiol. 1979;33:481–517. doi: 10.1146/annurev.mi.33.100179.002405. [DOI] [PubMed] [Google Scholar]
  19. Conrad R., Meyer O., Seiler W. Role of carboxydobacteria in consumption of atmospheric carbon monoxide by soil. Appl Environ Microbiol. 1981 Aug;42(2):211–215. doi: 10.1128/aem.42.2.211-215.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Conrad R., Phelps T. J., Zeikus J. G. Gas metabolism evidence in support of the juxtaposition of hydrogen-producing and methanogenic bacteria in sewage sludge and lake sediments. Appl Environ Microbiol. 1985 Sep;50(3):595–601. doi: 10.1128/aem.50.3.595-601.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Conrad R., Seiler W. Role of microorganisms in the consumption and production of atmospheric carbon monoxide by soil. Appl Environ Microbiol. 1980 Sep;40(3):437–445. doi: 10.1128/aem.40.3.437-445.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Coyne M. S., Arunakumari A., Averill B. A., Tiedje J. M. Immunological identification and distribution of dissimilatory heme cd1 and nonheme copper nitrite reductases in denitrifying bacteria. Appl Environ Microbiol. 1989 Nov;55(11):2924–2931. doi: 10.1128/aem.55.11.2924-2931.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Davidson E. A., Swank W. T., Perry T. O. Distinguishing between Nitrification and Denitrification as Sources of Gaseous Nitrogen Production in Soil. Appl Environ Microbiol. 1986 Dec;52(6):1280–1286. doi: 10.1128/aem.52.6.1280-1286.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Dong X., Stams A. J. Evidence for H2 and formate formation during syntrophic butyrate and propionate degradation. Anaerobe. 1995 Feb;1(1):35–39. doi: 10.1016/s1075-9964(95)80405-6. [DOI] [PubMed] [Google Scholar]
  25. Dunfield P., Knowles R. Kinetics of inhibition of methane oxidation by nitrate, nitrite, and ammonium in a humisol. Appl Environ Microbiol. 1995 Aug;61(8):3129–3135. doi: 10.1128/aem.61.8.3129-3135.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Engel R. R., Matsen J. M., Chapman S. S., Schwartz S. Carbon monoxide production from heme compounds by bacteria. J Bacteriol. 1972 Dec;112(3):1310–1315. doi: 10.1128/jb.112.3.1310-1315.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Engel R. R., Modler S., Matsen J. M., Petryka Z. J. Carbon monoxide production from hydroxocobalamin by bacteria. Biochim Biophys Acta. 1973 Jun 20;313(1):150–155. doi: 10.1016/0304-4165(73)90195-5. [DOI] [PubMed] [Google Scholar]
  28. Ensign S. A., Ludden P. W. Characterization of the CO oxidation/H2 evolution system of Rhodospirillum rubrum. Role of a 22-kDa iron-sulfur protein in mediating electron transfer between carbon monoxide dehydrogenase and hydrogenase. J Biol Chem. 1991 Sep 25;266(27):18395–18403. [PubMed] [Google Scholar]
  29. Ensign S. A. Reactivity of carbon monoxide dehydrogenase from Rhodospirillum rubrum with carbon dioxide, carbonyl sulfide, and carbon disulfide. Biochemistry. 1995 Apr 25;34(16):5372–5378. doi: 10.1021/bi00016a008. [DOI] [PubMed] [Google Scholar]
  30. Ferenci T., Strom T., Quayle J. R. Oxidation of carbon monoxide and methane by Pseudomonas methanica. J Gen Microbiol. 1975 Nov;91(1):79–91. doi: 10.1099/00221287-91-1-79. [DOI] [PubMed] [Google Scholar]
  31. Ferguson S. J. Denitrification and its control. Antonie Van Leeuwenhoek. 1994;66(1-3):89–110. doi: 10.1007/BF00871634. [DOI] [PubMed] [Google Scholar]
  32. Ferry J. G. CO dehydrogenase. Annu Rev Microbiol. 1995;49:305–333. doi: 10.1146/annurev.mi.49.100195.001513. [DOI] [PubMed] [Google Scholar]
  33. Firestone M. K., Tiedje J. M. Temporal change in nitrous oxide and dinitrogen from denitrification following onset of anaerobiosis. Appl Environ Microbiol. 1979 Oct;38(4):673–679. doi: 10.1128/aem.38.4.673-679.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Friedrich B., Schwartz E. Molecular biology of hydrogen utilization in aerobic chemolithotrophs. Annu Rev Microbiol. 1993;47:351–383. doi: 10.1146/annurev.mi.47.100193.002031. [DOI] [PubMed] [Google Scholar]
  35. Gadkari D., Schricker K., Acker G., Kroppenstedt R. M., Meyer O. Streptomyces thermoautotrophicus sp. nov., a Thermophilic CO- and H(2)-Oxidizing Obligate Chemolithoautotroph. Appl Environ Microbiol. 1990 Dec;56(12):3727–3734. doi: 10.1128/aem.56.12.3727-3734.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Gamble T. N., Betlach M. R., Tiedje J. M. Numerically dominant denitrifying bacteria from world soils. Appl Environ Microbiol. 1977 Apr;33(4):926–939. doi: 10.1128/aem.33.4.926-939.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Goodwin S., Conrad R., Zeikus J. G. Influence of pH on microbial hydrogen metabolism in diverse sedimentary ecosystems. Appl Environ Microbiol. 1988 Feb;54(2):590–593. doi: 10.1128/aem.54.2.590-593.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Grahame D. A., DeMoll E. Substrate and accessory protein requirements and thermodynamics of acetyl-CoA synthesis and cleavage in Methanosarcina barkeri. Biochemistry. 1995 Apr 11;34(14):4617–4624. doi: 10.1021/bi00014a015. [DOI] [PubMed] [Google Scholar]
  39. Grotenhuis J. T., Smit M., Plugge C. M., Xu Y. S., van Lammeren A. A., Stams A. J., Zehnder A. J. Bacteriological composition and structure of granular sludge adapted to different substrates. Appl Environ Microbiol. 1991 Jul;57(7):1942–1949. doi: 10.1128/aem.57.7.1942-1949.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Guckert J. B., Ringelberg D. B., White D. C., Hanson R. S., Bratina B. J. Membrane fatty acids as phenotypic markers in the polyphasic taxonomy of methylotrophs within the Proteobacteria. J Gen Microbiol. 1991 Nov;137(11):2631–2641. doi: 10.1099/00221287-137-11-2631. [DOI] [PubMed] [Google Scholar]
  41. Hackstein J. H., Stumm C. K. Methane production in terrestrial arthropods. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5441–5445. doi: 10.1073/pnas.91.12.5441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Hales B. A., Edwards C., Ritchie D. A., Hall G., Pickup R. W., Saunders J. R. Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl Environ Microbiol. 1996 Feb;62(2):668–675. doi: 10.1128/aem.62.2.668-675.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Hanson R. S., Hanson T. E. Methanotrophic bacteria. Microbiol Rev. 1996 Jun;60(2):439–471. doi: 10.1128/mr.60.2.439-471.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Harmsen H. J., Wullings B., Akkermans A. D., Ludwig W., Stams A. J. Phylogenetic analysis of Syntrophobacter wolinii reveals a relationship with sulfate-reducing bacteria. Arch Microbiol. 1993;160(3):238–240. doi: 10.1007/BF00249130. [DOI] [PubMed] [Google Scholar]
  45. Higgins I. J., Best D. J., Hammond R. C., Scott D. Methane-oxidizing microorganisms. Microbiol Rev. 1981 Dec;45(4):556–590. doi: 10.1128/mr.45.4.556-590.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Holmes A. J., Costello A., Lidstrom M. E., Murrell J. C. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett. 1995 Oct 15;132(3):203–208. doi: 10.1016/0378-1097(95)00311-r. [DOI] [PubMed] [Google Scholar]
  47. Huie R. E., Padmaja S. The reaction of no with superoxide. Free Radic Res Commun. 1993;18(4):195–199. doi: 10.3109/10715769309145868. [DOI] [PubMed] [Google Scholar]
  48. Jackson R. W., DeMoss J. A. Effects of toluene on Escherichia coli. J Bacteriol. 1965 Nov;90(5):1420–1425. doi: 10.1128/jb.90.5.1420-1425.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Jensen K., Revsbech N. P., Nielsen L. P. Microscale distribution of nitrification activity in sediment determined with a shielded microsensor for nitrate. Appl Environ Microbiol. 1993 Oct;59(10):3287–3296. doi: 10.1128/aem.59.10.3287-3296.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Jensen K., Sloth N. P., Risgaard-Petersen N., Rysgaard S., Revsbech N. P. Estimation of nitrification and denitrification from microprofiles of oxygen and nitrate in model sediment systems. Appl Environ Microbiol. 1994 Jun;60(6):2094–2100. doi: 10.1128/aem.60.6.2094-2100.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Johansson C., Galbally I. E. Production of nitric oxide in loam under aerobic and anaerobic conditions. Appl Environ Microbiol. 1984 Jun;47(6):1284–1289. doi: 10.1128/aem.47.6.1284-1289.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Jones R. D., Morita R. Y. Methane Oxidation by Nitrosococcus oceanus and Nitrosomonas europaea. Appl Environ Microbiol. 1983 Feb;45(2):401–410. doi: 10.1128/aem.45.2.401-410.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Katayama Y., Narahara Y., Inoue Y., Amano F., Kanagawa T., Kuraishi H. A thiocyanate hydrolase of Thiobacillus thioparus. A novel enzyme catalyzing the formation of carbonyl sulfide from thiocyanate. J Biol Chem. 1992 May 5;267(13):9170–9175. [PubMed] [Google Scholar]
  54. Kerby R. L., Hong S. S., Ensign S. A., Coppoc L. J., Ludden P. W., Roberts G. P. Genetic and physiological characterization of the Rhodospirillum rubrum carbon monoxide dehydrogenase system. J Bacteriol. 1992 Aug;174(16):5284–5294. doi: 10.1128/jb.174.16.5284-5294.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Kightley D., Nedwell D. B., Cooper M. Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms. Appl Environ Microbiol. 1995 Feb;61(2):592–601. doi: 10.1128/aem.61.2.592-601.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. King G. M. Associations of methanotrophs with the roots and rhizomes of aquatic vegetation. Appl Environ Microbiol. 1994 Sep;60(9):3220–3227. doi: 10.1128/aem.60.9.3220-3227.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. King G. M., Roslev P., Skovgaard H. Distribution and rate of methane oxidation in sediments of the Florida everglades. Appl Environ Microbiol. 1990 Sep;56(9):2902–2911. doi: 10.1128/aem.56.9.2902-2911.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. King G. M., Schnell S. Ammonium and Nitrite Inhibition of Methane Oxidation by Methylobacter albus BG8 and Methylosinus trichosporium OB3b at Low Methane Concentrations. Appl Environ Microbiol. 1994 Oct;60(10):3508–3513. doi: 10.1128/aem.60.10.3508-3513.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Klainguti G., Lang J. Diagnostic et traitement chirurgical de la parésie bilaterale de l'oblique supérieur. Klin Monbl Augenheilkd. 1995 May;206(5):359–364. doi: 10.1055/s-2008-1035462. [DOI] [PubMed] [Google Scholar]
  60. Koike I., Hattori A. Energy yield of denitrification: an estimate from growth yield in continuous cultures of Pseudomonas denitrificans under nitrate-, nitrite- and oxide-limited conditions. J Gen Microbiol. 1975 May;88(1):11–19. doi: 10.1099/00221287-88-1-11. [DOI] [PubMed] [Google Scholar]
  61. Koschorreck M., Moore E., Conrad R. Oxidation of nitric oxide by a new heterotrophic Pseudomonas sp. Arch Microbiol. 1996 Jul;166(1):23–31. doi: 10.1007/s002030050351. [DOI] [PubMed] [Google Scholar]
  62. Kuhn M., Steinbüchel A., Schlegel H. G. Hydrogen evolution by strictly aerobic hydrogen bacteria under anaerobic conditions. J Bacteriol. 1984 Aug;159(2):633–639. doi: 10.1128/jb.159.2.633-639.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Kusel K., Drake H. L. Effects of environmental parameters on the formation and turnover of acetate by forest soils. Appl Environ Microbiol. 1995 Oct;61(10):3667–3675. doi: 10.1128/aem.61.10.3667-3675.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Körner H., Frunzke K., Döhler K., Zumft W. G. Immunochemical patterns of distribution of nitrous oxide reductase and nitrite reductase (cytochrome cd1) among denitrifying pseudomonads. Arch Microbiol. 1987 Jun;148(1):20–24. doi: 10.1007/BF00429641. [DOI] [PubMed] [Google Scholar]
  65. Körner H., Zumft W. G. Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri. Appl Environ Microbiol. 1989 Jul;55(7):1670–1676. doi: 10.1128/aem.55.7.1670-1676.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. La Favre J. S., Focht D. D. Conservation in soil of h(2) liberated from n(2) fixation by hup nodules. Appl Environ Microbiol. 1983 Aug;46(2):304–311. doi: 10.1128/aem.46.2.304-311.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Lee M. J., Zinder S. H. Hydrogen partial pressures in a thermophilic acetate-oxidizing methanogenic coculture. Appl Environ Microbiol. 1988 Jun;54(6):1457–1461. doi: 10.1128/aem.54.6.1457-1461.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Lee Monica J., Zinder Stephen H. Isolation and Characterization of a Thermophilic Bacterium Which Oxidizes Acetate in Syntrophic Association with a Methanogen and Which Grows Acetogenically on H(2)-CO(2). Appl Environ Microbiol. 1988 Jan;54(1):124–129. doi: 10.1128/aem.54.1.124-129.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Lovley D. R. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev. 1991 Jun;55(2):259–287. doi: 10.1128/mr.55.2.259-287.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Lovley D. R., Dwyer D. F., Klug M. J. Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments. Appl Environ Microbiol. 1982 Jun;43(6):1373–1379. doi: 10.1128/aem.43.6.1373-1379.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Lovley D. R., Ferry J. G. Production and Consumption of H(2) during Growth of Methanosarcina spp. on Acetate. Appl Environ Microbiol. 1985 Jan;49(1):247–249. doi: 10.1128/aem.49.1.247-249.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Lovley D. R., Phillips E. J., Lonergan D. J. Hydrogen and Formate Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese by Alteromonas putrefaciens. Appl Environ Microbiol. 1989 Mar;55(3):700–706. doi: 10.1128/aem.55.3.700-706.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Lovley D. R., Phillips E. J., Lonergan D. J., Widman P. K. Fe(III) and S0 reduction by Pelobacter carbinolicus. Appl Environ Microbiol. 1995 Jun;61(6):2132–2138. doi: 10.1128/aem.61.6.2132-2138.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Mancinelli R. L., McKay C. P. Effects of nitric oxide and nitrogen dioxide on bacterial growth. Appl Environ Microbiol. 1983 Jul;46(1):198–202. doi: 10.1128/aem.46.1.198-202.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. McDonald I. R., Kenna E. M., Murrell J. C. Detection of methanotrophic bacteria in environmental samples with the PCR. Appl Environ Microbiol. 1995 Jan;61(1):116–121. doi: 10.1128/aem.61.1.116-121.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. McInerney M. J., Bryant M. P. Anaerobic Degradation of Lactate by Syntrophic Associations of Methanosarcina barkeri and Desulfovibrio Species and Effect of H(2) on Acetate Degradation. Appl Environ Microbiol. 1981 Feb;41(2):346–354. doi: 10.1128/aem.41.2.346-354.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. McKenney D. J., Shuttleworth K. F., Vriesacker J. R., Findlay W. I. Production and loss of nitric oxide from denitrification in anaerobic brookston clay. Appl Environ Microbiol. 1982 Mar;43(3):534–541. doi: 10.1128/aem.43.3.534-541.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Miller A. G., Espie G. S., Canvin D. T. Use of Carbon Oxysulfide, a Structural Analog of CO(2), to Study Active CO(2) Transport in the Cyanobacterium Synechococcus UTEX 625. Plant Physiol. 1989 Jul;90(3):1221–1231. doi: 10.1104/pp.90.3.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Mountfort D. O., Asher R. A., Mays E. L., Tiedje J. M. Carbon and electron flow in mud and sandflat intertidal sediments at delaware inlet, nelson, new zealand. Appl Environ Microbiol. 1980 Apr;39(4):686–694. doi: 10.1128/aem.39.4.686-694.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Murrell J. C. Molecular genetics of methane oxidation. Biodegradation. 1994 Dec;5(3-4):145–159. doi: 10.1007/BF00696456. [DOI] [PubMed] [Google Scholar]
  81. Oremland R. S., Culbertson C. W. Evaluation of methyl fluoride and dimethyl ether as inhibitors of aerobic methane oxidation. Appl Environ Microbiol. 1992 Sep;58(9):2983–2992. doi: 10.1128/aem.58.9.2983-2992.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Padmaja S., Huie R. E. The reaction of nitric oxide with organic peroxyl radicals. Biochem Biophys Res Commun. 1993 Sep 15;195(2):539–544. doi: 10.1006/bbrc.1993.2079. [DOI] [PubMed] [Google Scholar]
  83. Parkin T. B., Sexstone A. J., Tiedje J. M. Adaptation of Denitrifying Populations to Low Soil pH. Appl Environ Microbiol. 1985 May;49(5):1053–1056. doi: 10.1128/aem.49.5.1053-1056.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Peters V., Conrad R. Methanogenic and other strictly anaerobic bacteria in desert soil and other oxic soils. Appl Environ Microbiol. 1995 Apr;61(4):1673–1676. doi: 10.1128/aem.61.4.1673-1676.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Phelps T. J., Conrad R., Zeikus J. G. Sulfate-Dependent Interspecies H(2) Transfer between Methanosarcina barkeri and Desulfovibrio vulgaris during Coculture Metabolism of Acetate or Methanol. Appl Environ Microbiol. 1985 Sep;50(3):589–594. doi: 10.1128/aem.50.3.589-594.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Pichinoty F., Garcia J. L., Mandel M., Job C., Durand M. Isolement de bactéries utilisant en anaérobiose l'oxyde nitrique comme accepteur d'électrons respiratoire. C R Acad Sci Hebd Seances Acad Sci D. 1978 May 16;286(19):1403–1405. [PubMed] [Google Scholar]
  87. Postgate J. R. Methane as a minor product of pyruvate metabolism by sulphate-reducing and other bacteria. J Gen Microbiol. 1969 Aug;57(3):293–302. doi: 10.1099/00221287-57-3-293. [DOI] [PubMed] [Google Scholar]
  88. Poth M., Focht D. D. N Kinetic Analysis of N(2)O Production by Nitrosomonas europaea: an Examination of Nitrifier Denitrification. Appl Environ Microbiol. 1985 May;49(5):1134–1141. doi: 10.1128/aem.49.5.1134-1141.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Prinn R. G., Weiss R. F., Miller B. R., Huang J., Alyea F. N., Cunnold D. M., Fraser P. J., Hartley D. E., Simmonds P. G. Atmospheric Trends and Lifetime of CH3CCI3 and Global OH Concentrations. Science. 1995 Jul 14;269(5221):187–192. doi: 10.1126/science.269.5221.187. [DOI] [PubMed] [Google Scholar]
  90. Radler F., Greese K. D., Bock R., Seiler W. Die Bildung von Spuren von Kohlenmonoxid durch Saccharomyces cerevisiae und andere Mikroorganismen. Arch Microbiol. 1974;100(3):243–252. doi: 10.1007/BF00446321. [DOI] [PubMed] [Google Scholar]
  91. Radmer R. J., Kok B. Rate-temperature curves as an unambiguous indicator of biological activity in soil. Appl Environ Microbiol. 1979 Aug;38(2):224–228. doi: 10.1128/aem.38.2.224-228.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Ramsing N. B., Kühl M., Jørgensen B. B. Distribution of sulfate-reducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes. Appl Environ Microbiol. 1993 Nov;59(11):3840–3849. doi: 10.1128/aem.59.11.3840-3849.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Raskin L., Poulsen L. K., Noguera D. R., Rittmann B. E., Stahl D. A. Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization. Appl Environ Microbiol. 1994 Apr;60(4):1241–1248. doi: 10.1128/aem.60.4.1241-1248.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Raskin L., Stromley J. M., Rittmann B. E., Stahl D. A. Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol. 1994 Apr;60(4):1232–1240. doi: 10.1128/aem.60.4.1232-1240.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Rimbault A., Niel P., Virelizier H., Darbord J. C., Leluan G. l-Methionine, a Precursor of Trace Methane in Some Proteolytic Clostridia. Appl Environ Microbiol. 1988 Jun;54(6):1581–1586. doi: 10.1128/aem.54.6.1581-1586.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Russell J. B., Cook G. M. Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiol Rev. 1995 Mar;59(1):48–62. doi: 10.1128/mr.59.1.48-62.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Rysgaard S., Risgaard-Petersen N., Nielsen L. P., Revsbech N. P. Nitrification and denitrification in lake and estuarine sediments measured by the N dilution technique and isotope pairing. Appl Environ Microbiol. 1993 Jul;59(7):2093–2098. doi: 10.1128/aem.59.7.2093-2098.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Samuelsson M. O. Dissimilatory nitrate reduction to nitrate, nitrous oxide, and ammonium by Pseudomonas putrefaciens. Appl Environ Microbiol. 1985 Oct;50(4):812–815. doi: 10.1128/aem.50.4.812-815.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Schnell S., King G. M. Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils. Appl Environ Microbiol. 1994 Oct;60(10):3514–3521. doi: 10.1128/aem.60.10.3514-3521.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Schnell S., King G. M. Responses of methanotrophic activity in soils and cultures to water stress. Appl Environ Microbiol. 1996 Sep;62(9):3203–3209. doi: 10.1128/aem.62.9.3203-3209.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Seefeldt L. C., Rasche M. E., Ensign S. A. Carbonyl sulfide and carbon dioxide as new substrates, and carbon disulfide as a new inhibitor, of nitrogenase. Biochemistry. 1995 Apr 25;34(16):5382–5389. doi: 10.1021/bi00016a009. [DOI] [PubMed] [Google Scholar]
  102. Shapleigh J. P., Payne W. J. Nitric oxide-dependent proton translocation in various denitrifiers. J Bacteriol. 1985 Sep;163(3):837–840. doi: 10.1128/jb.163.3.837-840.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Shiro Y., Fujii M., Isogai Y., Adachi S., Iizuka T., Obayashi E., Makino R., Nakahara K., Shoun H. Iron-ligand structure and iron redox property of nitric oxide reductase cytochrome P450nor from Fusarium oxysporum: relevance to its NO reduction activity. Biochemistry. 1995 Jul 18;34(28):9052–9058. doi: 10.1021/bi00028a014. [DOI] [PubMed] [Google Scholar]
  104. Shoun H., Kim D. H., Uchiyama H., Sugiyama J. Denitrification by fungi. FEMS Microbiol Lett. 1992 Jul 15;73(3):277–281. doi: 10.1016/0378-1097(92)90643-3. [DOI] [PubMed] [Google Scholar]
  105. Smith G. B., Tiedje J. M. Isolation and characterization of a nitrite reductase gene and its use as a probe for denitrifying bacteria. Appl Environ Microbiol. 1992 Jan;58(1):376–384. doi: 10.1128/aem.58.1.376-384.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Smith K. D., Klasson K. T., Ackerson M. D., Clausen E. C., Gaddy J. L. COS degradation by selected CO-utilizing bacteria. Scientific note. Appl Biochem Biotechnol. 1991 Spring;28-29:787–796. doi: 10.1007/BF02922649. [DOI] [PubMed] [Google Scholar]
  107. Stamler J. S., Singel D. J., Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science. 1992 Dec 18;258(5090):1898–1902. doi: 10.1126/science.1281928. [DOI] [PubMed] [Google Scholar]
  108. Stams A. J. Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Van Leeuwenhoek. 1994;66(1-3):271–294. doi: 10.1007/BF00871644. [DOI] [PubMed] [Google Scholar]
  109. Stolarski R., Bojkov R., Bishop L., Zerefos C., Staehelin J., Zawodny J. Measured trends in stratospheric ozone. Science. 1992 Apr 17;256(5055):342–349. doi: 10.1126/science.256.5055.342. [DOI] [PubMed] [Google Scholar]
  110. Svensson B. H. Different temperature optima for methane formation when enrichments from Acid peat are supplemented with acetate or hydrogen. Appl Environ Microbiol. 1984 Aug;48(2):389–394. doi: 10.1128/aem.48.2.389-394.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Telang A. J., Voordouw G., Ebert S., Sifeldeen N., Foght J. M., Fedorak P. M., Westlake D. W. Characterization of the diversity of sulfate-reducing bacteria in soil and mining waste water environments by nucleic acid hybridization techniques. Can J Microbiol. 1994 Nov;40(11):955–964. doi: 10.1139/m94-152. [DOI] [PubMed] [Google Scholar]
  112. Tenhunen R., Marver H. S., Schmid R. Microsomal heme oxygenase. Characterization of the enzyme. J Biol Chem. 1969 Dec 10;244(23):6388–6394. [PubMed] [Google Scholar]
  113. Teraguchi S., Hollocher T. C. Purification and some characteristics of a cytochrome c-containing nitrous oxide reductase from Wolinella succinogenes. J Biol Chem. 1989 Feb 5;264(4):1972–1979. [PubMed] [Google Scholar]
  114. Thiele Jurgen H., Chartrain M., Zeikus J. Gregory. Control of Interspecies Electron Flow during Anaerobic Digestion: Role of Floc Formation in Syntrophic Methanogenesis. Appl Environ Microbiol. 1988 Jan;54(1):10–19. doi: 10.1128/aem.54.1.10-19.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Thiele Jurgen H., Zeikus J. Gregory. Control of Interspecies Electron Flow during Anaerobic Digestion: Significance of Formate Transfer versus Hydrogen Transfer during Syntrophic Methanogenesis in Flocs. Appl Environ Microbiol. 1988 Jan;54(1):20–29. doi: 10.1128/aem.54.1.20-29.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Thompson A. M. The oxidizing capacity of the earth's atmosphere: probable past and future changes. Science. 1992 May 22;256(5060):1157–1165. doi: 10.1126/science.256.5060.1157. [DOI] [PubMed] [Google Scholar]
  117. Torsvik V., Goksøyr J., Daae F. L. High diversity in DNA of soil bacteria. Appl Environ Microbiol. 1990 Mar;56(3):782–787. doi: 10.1128/aem.56.3.782-787.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Tortoso A. C., Hutchinson G. L. Contributions of Autotrophic and Heterotrophic Nitrifiers to Soil NO and N(2)O Emissions. Appl Environ Microbiol. 1990 Jun;56(6):1799–1805. doi: 10.1128/aem.56.6.1799-1805.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Uffen R. L. Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3298–3302. doi: 10.1073/pnas.73.9.3298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Unden G., Trageser M., Duchêne A. Effect of positive redox potentials (greater than +400 mV) on the expression of anaerobic respiratory enzymes in Escherichia coli. Mol Microbiol. 1990 Feb;4(2):315–319. doi: 10.1111/j.1365-2958.1990.tb00598.x. [DOI] [PubMed] [Google Scholar]
  121. Vedenina I. Ia, Miller Iu M., Kapustin O. A., Zavarzin G. A. Okislenie zakisi azota pri razlozhenii perekisi vodorada katalazoi. Mikrobiologiia. 1980 Jan-Feb;49(1):5–8. [PubMed] [Google Scholar]
  122. Vedenina I. Ia, Zavarzin G. A. Biologicheskoe udalenie zakisi azota v okislitel'nykh usloviiakh. Mikrobiologiia. 1977 Sep-Oct;46(5):898–903. [PubMed] [Google Scholar]
  123. Vestal J. R., White D. C. Lipid analysis in microbial ecology: quantitative approaches to the study of microbial communities. Bioscience. 1989 Sep;39(8):535–541. [PubMed] [Google Scholar]
  124. Visser F. A., van Lier J. B., Macario A. J., Conway de Macario E. Diversity and population dynamics of methanogenic bacteria in a granular consortium. Appl Environ Microbiol. 1991 Jun;57(6):1728–1734. doi: 10.1128/aem.57.6.1728-1734.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Voordouw G., Voordouw J. K., Karkhoff-Schweizer R. R., Fedorak P. M., Westlake D. W. Reverse sample genome probing, a new technique for identification of bacteria in environmental samples by DNA hybridization, and its application to the identification of sulfate-reducing bacteria in oil field samples. Appl Environ Microbiol. 1991 Nov;57(11):3070–3078. doi: 10.1128/aem.57.11.3070-3078.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Vosswinkel R., Neidt I., Bothe H. The production and utilization of nitric oxide by a new, denitrifying strain of Pseudomonas aeruginosa. Arch Microbiol. 1991;156(1):62–69. doi: 10.1007/BF00418189. [DOI] [PubMed] [Google Scholar]
  127. WESTLAKE D. W., ROXBURGH J. M., TALBOT G. Microbial production of carbon monoxide from flavonoids. Nature. 1961 Feb 11;189:510–511. doi: 10.1038/189510a0. [DOI] [PubMed] [Google Scholar]
  128. WESTLAKE D. W., TALBOT G., BLAKLEY E. R., SIMPSON F. J. Microbiol decomposition of rutin. Can J Microbiol. 1959 Dec;5:621–629. doi: 10.1139/m59-076. [DOI] [PubMed] [Google Scholar]
  129. Ward B. B., Cockcroft A. R., Kilpatrick K. A. Antibody and DNA probes for detection of nitrite reductase in seawater. J Gen Microbiol. 1993 Sep;139(9):2285–2293. doi: 10.1099/00221287-139-9-2285. [DOI] [PubMed] [Google Scholar]
  130. Warikoo V., McInerney M. J., Robinson J. A., Suflita J. M. Interspecies acetate transfer influences the extent of anaerobic benzoate degradation by syntrophic consortia. Appl Environ Microbiol. 1996 Jan;62(1):26–32. doi: 10.1128/aem.62.1.26-32.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Wawer C., Muyzer G. Genetic diversity of Desulfovibrio spp. in environmental samples analyzed by denaturing gradient gel electrophoresis of [NiFe] hydrogenase gene fragments. Appl Environ Microbiol. 1995 Jun;61(6):2203–2210. doi: 10.1128/aem.61.6.2203-2210.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Wennberg P. O., Cohen R. C., Stimpfle R. M., Koplow J. P., Anderson J. G., Salawitch R. J., Fahey D. W., Woodbridge E. L., Keim E. R., Gao R. S., Webster C. R., May R. D., Toohey D. W., Avallone L. M., Proffitt M. H., Loewenstein M., Podolske J. R., Chan K. R., Wofsy S. C. Removal of Stratospheric O3 by Radicals: In Situ Measurements of OH, HO2, NO, NO2, ClO, and BrO. Science. 1994 Oct 21;266(5184):398–404. doi: 10.1126/science.266.5184.398. [DOI] [PubMed] [Google Scholar]
  133. Westermann P., Ahring B. K. Dynamics of methane production, sulfate reduction, and denitrification in a permanently waterlogged alder swamp. Appl Environ Microbiol. 1987 Oct;53(10):2554–2559. doi: 10.1128/aem.53.10.2554-2559.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Whalen S. C., Reeburgh W. S., Sandbeck K. A. Rapid methane oxidation in a landfill cover soil. Appl Environ Microbiol. 1990 Nov;56(11):3405–3411. doi: 10.1128/aem.56.11.3405-3411.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Wu W. M., Hickey R. F., Zeikus J. G. Characterization of metabolic performance of methanogenic granules treating brewery wastewater: role of sulfate-reducing bacteria. Appl Environ Microbiol. 1991 Dec;57(12):3438–3449. doi: 10.1128/aem.57.12.3438-3449.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. YAGI T. Enzymic oxidation of carbon monoxide. Biochim Biophys Acta. 1958 Oct;30(1):194–195. doi: 10.1016/0006-3002(58)90263-4. [DOI] [PubMed] [Google Scholar]
  137. Ye R. W., Averill B. A., Tiedje J. M. Denitrification: production and consumption of nitric oxide. Appl Environ Microbiol. 1994 Apr;60(4):1053–1058. doi: 10.1128/aem.60.4.1053-1058.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Yoshida T., Noguchi M., Kikuchi G. The step of carbon monoxide liberation in the sequence of heme degradation catalyzed by the reconstituted microsomal heme oxygenase system. J Biol Chem. 1982 Aug 25;257(16):9345–9348. [PubMed] [Google Scholar]
  139. Zafiriou O. C., Hanley Q. S., Snyder G. Nitric oxide and nitrous oxide production and cycling during dissimilatory nitrite reduction by Pseudomonas perfectomarina. J Biol Chem. 1989 Apr 5;264(10):5694–5699. [PubMed] [Google Scholar]
  140. Zeikus J. G., Kerby R., Krzycki J. A. Single-carbon chemistry of acetogenic and methanogenic bacteria. Science. 1985 Mar 8;227(4691):1167–1173. doi: 10.1126/science.3919443. [DOI] [PubMed] [Google Scholar]
  141. Zimmerman P. R., Greenberg J. P., Wandiga S. O., Crutzen P. J. Termites: a potentially large source of atmospheric methane, carbon dioxide, and molecular hydrogen. Science. 1982 Nov 5;218(4572):563–565. doi: 10.1126/science.218.4572.563. [DOI] [PubMed] [Google Scholar]
  142. Zumft W. G. The biological role of nitric oxide in bacteria. Arch Microbiol. 1993;160(4):253–264. doi: 10.1007/BF00292074. [DOI] [PubMed] [Google Scholar]