Genome architecture and the role of transcription (original) (raw)

2•. Tilgner H., Nikolaou C., Althammer S., Sammeth M., Beato M., Valcárcel J., Guigó R. Nucleosome positioning as a determinant of exon recognition. Nat Struct Mol Biol. 2009;16:996–1001. [PubMed] [Google Scholar]

3•. Schwartz S., Meshorer E., Ast G. Chromatin organization marks exon-intron structure. Nat Struct Mol Biol. 2009;16:990–995. [PubMed] [Google Scholar]These two papers present meta-analyses of data from different model organisms, and reveal that nucleosomes are not uniformly distributed across exons and introns.

4. Spies N., Nielsen C.B., Padgett R.A., Burge C.B. Biased chromatin signatures around polyadenylation sites and exons. Mol Cell. 2009;36:245–254. [PMC free article] [PubMed] [Google Scholar]

5••. Core L.J., Waterfall J.J., Lis J.T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science. 2008;322:1845–1848. [PMC free article] [PubMed] [Google Scholar]A novel approach for mapping nascent transcripts genome-wide shows that many seem to be copied from the anti-sense strand (as well as the sense strand) at promoters.

6••. Seila A.C., Calabrese J.M., Levine S.S., Yeo G.W., Rahl P.B., Flynn R.A., Young R.A., Sharp P.A. Divergent transcription from active promoters. Science. 2008;322:1849–1851. [PMC free article] [PubMed] [Google Scholar]A genome-wide analysis shows that both sense and anti-sense strands around promoters are transcribed.

7. Byun J.S., Wong M.M., Cui W., Idelman G., Li Q., De Siervi A., Bilke S., Haggerty C.M., Player A., Wang Y.H. Dynamic bookmarking of primary response genes by p300 and RNA polymerase II complexes. Proc Natl Acad Sci USA. 2009;106:19286–19291. [PMC free article] [PubMed] [Google Scholar]

8•. Chopra V.S., Cande J., Hong J.W., Levine M. Stalled Hox promoters as chromosomal boundaries. Genes Dev. 2009;23:1505–1509. [PMC free article] [PubMed] [Google Scholar]How boundary elements affect transcription has been mysterious; this paper shows that they themselves contain stalled polymerases and possess a bifunctional role.

9. Gilchrist D.A., Nechaev S., Lee C., Ghosh S.K., Collins J.B., Li L., Gilmour D.S., Adelman K. NELF-mediated stalling of Pol II can enhance gene expression by blocking promoter-proximal nucleosome assembly. Genes Dev. 2008;22:1921–1933. [PMC free article] [PubMed] [Google Scholar]

10. Xie X., Mikkelsen T.S., Gnirke A., Lindblad-Toh K., Kellis M., Lander E.S. Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites. Proc Natl Acad Sci USA. 2007;104:7145–7150. [PMC free article] [PubMed] [Google Scholar]

11. Wada Y., Ohta Y., Xu M., Tsutsumi S., Minami T., Inoue K., Komura D., Kitakami J., Oshida N., Papantonis A. A wave of nascent transcription on activated human genes. Proc Natl Acad Sci USA. 2009;106:18357–18361. [PMC free article] [PubMed] [Google Scholar]

12. Mishiro T., Ishihara K., Hino S., Tsutsumi S., Aburatani H., Shirahige K., Kinoshita Y., Nakao M. Architectural roles of multiple chromatin insulators at the human apolipoprotein gene cluster. EMBO J. 2009;28:1234–1245. [PMC free article] [PubMed] [Google Scholar]

13. Hadjur S., Williams L.M., Ryan N.K., Cobb B.S., Sexton T., Fraser P., Fisher A.G., Merkenschlager M. Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature. 2009;460:410–413. [PMC free article] [PubMed] [Google Scholar]

14. Apostolou E., Thanos D. Virus Infection Induces NF-kappaB-dependent interchromosomal associations mediating monoallelic IFN-beta gene expression. Cell. 2008;134:85–96. [PubMed] [Google Scholar]

15. Nolis I.K., McKay D.J., Mantouvalou E., Lomvardas S., Merika M., Thanos D. Transcription factors mediate long-range enhancer–promoter interactions. Proc Natl Acad Sci USA. 2009;48:20222–20227. [PMC free article] [PubMed] [Google Scholar]

16. Solovei I., Kreysing M., Lanctôt C., Kösem S., Peichl L., Cremer T., Guck J., Joffe B. Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell. 2009;137:356–368. [PubMed] [Google Scholar]

17. Szczerbal I., Foster H.A., Bridger J.M. The spatial repositioning of adipogenesis genes is correlated with their expression status in a porcine mesenchymal stem cell adipogenesis model system. Chromosoma. 2009;118:647–663. [PubMed] [Google Scholar]

18. Pickersgill H., Kalverda B., de Wit E., Talhout W., Fornerod M., van Steensel B. Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet. 2006;38:1005–1014. [PubMed] [Google Scholar]

19•. Guelen L., Pagie L., Brasset E., Meuleman W., Faza M.B., Talhout W., Eussen B.H., de Klein A., Wessels L., de Laat W., van Steensel B. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature. 2008;453:948–951. [PubMed] [Google Scholar]Genome-wide mapping shows that the nuclear periphery is both an active and an inactive compartment.

20. Kumaran R.I., Spector D.L. A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J Cell Biol. 2008;180:51–65. [PMC free article] [PubMed] [Google Scholar]

21. Reddy K.L., Zullo J.M., Bertolino E., Singh H. Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature. 2008;452:243–247. [PubMed] [Google Scholar]

22. Miele A., Bystricky K., Dekker J. Yeast silent mating type loci form heterochromatic clusters through silencer protein-dependent long-range interactions. PLoS Genet. 2009;5:e1000478. [PMC free article] [PubMed] [Google Scholar]

23•. Wilson M.D., Barbosa-Morais N.L., Schmidt D., Conboy C.M., Vanes L., Tybulewicz V.L., Fisher E.M., Tavaré S., Odom D.T. Species-specific transcription in mice carrying human chromosome 21. Science. 2008;322:434–438. [PMC free article] [PubMed] [Google Scholar]In an era when epigenetic control stands centre stage, this paper reminds us that the primary DNA sequence still contains much of the information that specifies when and where genes are expressed.

24. Noordermeer D., Branco M.R., Splinter E., Klous P., van Ijcken W., Swagemakers S., Koutsourakis M., van der Spek P., Pombo A., de Laat W. Transcription and chromatin organization of a housekeeping gene cluster containing an integrated beta-globin locus control region. PLoS Genet. 2008;4:e1000016. [PMC free article] [PubMed] [Google Scholar]

25. Rodley C.D., Bertels F., Jones B., O'Sullivan J.M. Global identification of yeast chromosome interactions using genome conformation capture. Fungal Genet Biol. 2009;46:879–886. [PubMed] [Google Scholar]

26••. Lieberman-Aiden E., van Berkum N.L., Williams L., Imakaev M., Ragoczy T., Telling A., Amit I., Lajoie B.R., Sabo P.J., Dorschner M.O. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326:289–293. [PMC free article] [PubMed] [Google Scholar]A comprehensive – albeit low-resolution – map of all contacts made by all sequences in the human genome with all other sequences and a mathematical model of the organization. Although the biological results are hardly surprising (euchromatin tends to contact euchromatin, and heterochromatin tends to contact heterochromatin), this paper shows what is now possible.

27. Cook P.R., Marenduzzo D. Entropic organization of interphase chromosomes. J Cell Biol. 2009;186:825–834. [PMC free article] [PubMed] [Google Scholar]

28. Engel N., Raval A.K., Thorvaldsen J.L., Bartolomei S.M. Three-dimensional conformation at the H19/Igf2 locus supports a model of enhancer tracking. Hum Mol Genet. 2008;17:3021–3029. [PMC free article] [PubMed] [Google Scholar]

29. Hakim O., John S., Ling J.Q., Biddie S.C., Hoffman A.R., Hager G.L. Glucocorticoid receptor activation of the Ciz1-Lcn2 locus by long range interactions. J Biol Chem. 2009;284:6048–6052. [PMC free article] [PubMed] [Google Scholar]

30. Jing H., Vakoc C.R., Ying L., Mandat S., Wang H., Zheng X., Blobel G.A. Exchange of GATA factors mediates transitions in looped chromatin organization at a developmentally regulated gene locus. Mol Cell. 2008;29:232–242. [PMC free article] [PubMed] [Google Scholar]

31. Makkonen H., Kauhanen M., Paakinaho V., Jääskeläinen T., Palvimo J.J. Long-range activation of FKBP51 transcription by the androgen receptor via distal intronic enhancers. Nucleic Acids Res. 2009;37:4135–4148. [PMC free article] [PubMed] [Google Scholar]

32. Singh B.N., Hampsey M. A transcription-independent role for TFIIB in gene looping. Mol Cell. 2007;27:806–816. [PubMed] [Google Scholar]

33. El Kaderi B., Medler S., Raghunayakula S., Ansari A. Gene looping is conferred by activator-dependent interaction of transcription initiation and termination machineries. J Biol Chem. 2009;284:25015–25025. [PMC free article] [PubMed] [Google Scholar]

34. Tan-Wong S.M., Wijayatilake H.D., Proudfoot N.J. Gene loops function to maintain transcriptional memory through interaction with the nuclear pore complex. Genes Dev. 2009;23:2610–2624. [PMC free article] [PubMed] [Google Scholar]

35. Glover-Cutter K., Kim S., Espinosa J., Bentley D.L. RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes. Nat Struct Mol Biol. 2008;15:71–78. [PMC free article] [PubMed] [Google Scholar]

36••. Fullwood M.J., Liu M.H., Pan Y.F., Liu J., Xu H., Mohamed Y.B., Orlov Y.L., Velkov S., Ho A., Mei P.H. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature. 2009;462:58–64. [PMC free article] [PubMed] [Google Scholar]A combination of ChIP, 3C and deep-sequencing shows that contacting DNA sequences usually contain RNA polymerase II bound to both contacting partners.

37. Sutherland H., Bickmore W.A. Transcription factories: gene expression in unions? Nat Rev Genet. 2009;10:457–466. [PubMed] [Google Scholar]

38. Cook P.R. A model for all genomes: the role of transcription factories. J Mol Biol. 2010;395:1–10. [PubMed] [Google Scholar]

39. Eskiw C.H., Rapp A., Carter D.R., Cook P.R. RNA polymerase II activity is located on the surface of protein-rich transcription factories. J Cell Sci. 2008;121:1999–2007. [PubMed] [Google Scholar]

40. Xu M., Cook P.R. Similar active genes cluster in specialized transcription factories. J Cell Biol. 2008;181:615–623. [PMC free article] [PubMed] [Google Scholar]

41. Dhar S.S., Ongwijitwat S., Wong-Riley M.T. Chromosome conformation capture of all 13 genomic Loci in the transcriptional regulation of the multisubunit bigenomic cytochrome C oxidase in neurons. J Biol Chem. 2009;284:18644–18650. [PMC free article] [PubMed] [Google Scholar]

42•. Schoenfelder S., Sexton T., Chakalova L., Cope N.F., Horton A., Andrews S., Kurukuti S., Mitchell J.A., Umlauf D., Dimitrova D.S. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet. 2010;42:53–61. [PMC free article] [PubMed] [Google Scholar]This paper shows that erythropoiesis-related genes are often co-transcribed in factories.

43. Chubb J.R., Trcek T., Shenoy S.M., Singer R.H. Transcriptional pulsing of a developmental gene. Curr Biol. 2006;16:1018–1025. [PMC free article] [PubMed] [Google Scholar]

44. Boettiger A.N., Levine M. Synchronous and stochastic patterns of gene activation in the Drosophila embryo. Science. 2009;325:471–473. [PMC free article] [PubMed] [Google Scholar]

45•. Zenklusen D., Larson D.R., Singer R.H. Single-RNA counting reveals alternative modes of gene expression in yeast. Nat Struct Mol Biol. 2008;15:1263–1271. [PMC free article] [PubMed] [Google Scholar]RNA FISH is used to detect single RNA molecules both at the transcription site in the nucleus and in the cytoplasm; results point to the different types of expression illustrated in Figure 2a.

46. Degenhardt T., Rybakova K.N., Tomaszewska A., Moné M.J., Westerhoff H.V., Bruggeman F.J., Carlberg C. Population-level transcription cycles derive from stochastic timing of single-cell transcription. Cell. 2009;138:489–501. [PubMed] [Google Scholar]

47••. Ashall L., Horton C.A., Nelson D.E., Paszek P., Harper C.V., Sillitoe K., Ryan S., Spiller D.G., Unitt J.F., Broomhead D.S. Pulsatile stimulation determines timing and specificity of NF-kappaB-dependent transcription. Science. 2009;324:242–246. [PMC free article] [PubMed] [Google Scholar]Demonstration that TNFα induction controls NFκB translocation into the nucleus; this occurs in a pulsatile manner and determines transcriptional timing and specificity.

48. Sung M.H., Salvatore L., De Lorenzi R., Indrawan A., Pasparakis M., Hager G.L., Bianchi M.E., Agresti A. Sustained oscillations of NF-kappaB produce distinct genome scanning and gene expression profiles. PLoS One. 2009;4:e7163. [PMC free article] [PubMed] [Google Scholar]

49. Cai L., Dalal C.K., Elowitz M.B. Frequency-modulated nuclear localization bursts coordinate gene regulation. Nature. 2008;455:485–490. [PMC free article] [PubMed] [Google Scholar]

50. Swinburne I.A., Miguez D.G., Landgraf D., Silver P.A. Intron length increases oscillatory periods of gene expression in animal cells. Genes Dev. 2008;22:2342–2346. [PMC free article] [PubMed] [Google Scholar]

51. Ferrai C., Xie S.Q., Luraghi P., Munari D., Ramirez F., Branco M.R., Pombo A., Crippa M.P. Poised transcription factories prime silent uPA gene prior to activation. PLoS Biol. 2010;8:e1000270. [PMC free article] [PubMed] [Google Scholar]