Natural Killing of Herpes Simplex Virus Type 1-Infected Target Cells: Normal Human Responses and Influence of Antiviral Antibody (original) (raw)

Infect Immun. 1979 Oct; 26(1): 49–56.

1Memorial Sloan-Kettering Cancer Center, New York, New York 10021

Abstract

Studies of a mouse model of genetic resistance to herpes simplex virus type 1 (HSV-1) indicate that the marrow-dependent effector cell of allogeneic resistance plays an important role in natural resistance to this virus infection. Since the marrow-dependent effector cell appears to be closely related to the natural killer (NK) cells, an NK assay with HSV-1-infected fibroblasts [NK(HSV-1)] has been developed to study this resistance mechanism in humans. Incubation of effector and target cells for 12 to 14 h gave the greatest percent specific release (%SR) and kept spontaneous 51Cr release from infected target cells below 35%. Patients with Bruton's agammaglobulinemia demonstrated significant kill indicating antiviral antibody was not necessary. Seropositive individuals gave a 9% greater%SR than seronegative individuals. Depletion of B-cells consistently diminished NK (HSV-1) for seropositive individuals and augmented kill for seronegative individuals. Although antiviral antibody produced in culture may contribute to NK (HSV-1), depletion of B-cells allowed quantitation of NK (HSV-1) to the exclusion of most of the antibody-dependent kill. The NK cells detected by this assay showed many of the properties reported for NK cells with K562 targets. Two patients with severe herpesvirus infections demonstrated NK (HSV-1) responses greater than 2 standard deviations below the normal mean. Since normal individuals with virus infections have higher rather than lower natural kill, the low NK (HSV-1) may reflect their susceptibility to the virus infection.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.2M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.


Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)