Evidence for a functional role of endogenously produced somatomedinlike peptides in the regulation of DNA synthesis in cultured human fibroblasts and porcine smooth muscle cells (original) (raw)

Abstract

Cultured porcine aortic smooth muscle cells and human fibroblasts produce somatomedinlike peptides and secrete them into the surrounding microenvironment. This production has been linked to their ability to replicate. The objective of this study was to determine if a specific anti-somatomedin-C (Sm-C) monoclonal antibody that binds the somatomedinlike peptides could inhibit replication by porcine aortic smooth muscle cells and human fibroblasts. To determine if the antibody could inhibit the effect of endogenously produced somatomedinlike peptide, increasing concentrations of antibody were co-incubated with platelet-derived growth factor, a known stimulant of somatomedinlike peptide secretion, and Sm-C-deficient platelet-poor plasma. Addition of the antibody reduced fibroblast [3H]thymidine incorporation from 35,100 +/- 500 to 10,600 +/- 700 cpm (P less than 0.001), and in smooth muscle cells from 29,600 +/- 1,800 to 10,800 +/- 1,100 cpm (P less than 0.001). Co-incubation of exogenously added Sm-C (20 ng/ml) with maximally inhibitory dilutions of antibody increased [3H]thymidine incorporation in fibroblasts from 7,800 +/- 1,000 to 18,900 +/- 800 cpm (P less than 0.01), and in smooth muscle cells from 9,800 +/- 1,200 to 17,200 +/- 1,100 cpm (P less than 0.01). Insulin, which can substitute for Sm-C as a mitogen and does not bind to the antibody, stimulated DNA synthesis when co-incubated with the antibody, thereby excluding the possibility of nonspecific cytotoxicity. These results strengthen the hypothesis that the rate of DNA synthesis of these two cell types in vitro is directly linked to their capacity to produce somatomedinlike peptides. They further support the cellular production of somatomedinlike peptides as examples of the autocrine model of growth regulation.

1914

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams R. L. The effect of endogenous pools of thymidylate on the apparent rate of DNA synthesis. Exp Cell Res. 1969 Jul;56(1):55–58. doi: 10.1016/0014-4827(69)90393-0. [DOI] [PubMed] [Google Scholar]
  2. Atkison P. R., Bala R. M. Partial characterization of a mitogenic factor with somatomedin-like activity produced by culture WI-38 human fibroblasts. J Cell Physiol. 1981 Jun;107(3):317–327. doi: 10.1002/jcp.1041070303. [DOI] [PubMed] [Google Scholar]
  3. Atkison P. R., Weidman E. R., Bhaumick B., Bala R. M. Release of somatomedin-like activity by cultured WI-38 human fibroblasts. Endocrinology. 1980 Jun;106(6):2006–2012. doi: 10.1210/endo-106-6-2006. [DOI] [PubMed] [Google Scholar]
  4. Baxter R. C., Axiak S., Raison R. L. Monoclonal antibody against human somatomedin-C/insulin-like growth factor-I. J Clin Endocrinol Metab. 1982 Feb;54(2):474–476. doi: 10.1210/jcem-54-2-474. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Clemmons D. R., Isley W. L., Brown M. T. Dialyzable factor in human serum of platelet origin stimulates endothelial cell replication and growth. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1641–1645. doi: 10.1073/pnas.80.6.1641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clemmons D. R., Shaw D. S. Variables controlling somatomedin production by cultured human fibroblasts. J Cell Physiol. 1983 May;115(2):137–142. doi: 10.1002/jcp.1041150206. [DOI] [PubMed] [Google Scholar]
  8. Clemmons D. R., Underwood L. E., Van Wyk J. J. Hormonal control of immunoreactive somatomedin production by cultured human fibroblasts. J Clin Invest. 1981 Jan;67(1):10–19. doi: 10.1172/JCI110001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clemmons D. R., Van Wyk J. J. Somatomedin-C and platelet-derived growth factor stimulate human fibroblast replication. J Cell Physiol. 1981 Mar;106(3):361–367. doi: 10.1002/jcp.1041060305. [DOI] [PubMed] [Google Scholar]
  10. Copeland K. C., Underwood L. E., Van Wyk J. J. Induction of immunoreactive somatomedin C human serum by growth hormone: dose-response relationships and effect on chromatographic profiles. J Clin Endocrinol Metab. 1980 Apr;50(4):690–697. doi: 10.1210/jcem-50-4-690. [DOI] [PubMed] [Google Scholar]
  11. D'Ercole A. J., Applewhite G. T., Underwood L. E. Evidence that somatomedin is synthesized by multiple tissues in the fetus. Dev Biol. 1980 Mar 15;75(2):315–328. doi: 10.1016/0012-1606(80)90166-9. [DOI] [PubMed] [Google Scholar]
  12. D'Ercole A. J., Stiles A. D., Underwood L. E. Tissue concentrations of somatomedin C: further evidence for multiple sites of synthesis and paracrine or autocrine mechanisms of action. Proc Natl Acad Sci U S A. 1984 Feb;81(3):935–939. doi: 10.1073/pnas.81.3.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Deuel T. F., Huang J. S., Huang S. S., Stroobant P., Waterfield M. D. Expression of a platelet-derived growth factor-like protein in simian sarcoma virus transformed cells. Science. 1983 Sep 30;221(4618):1348–1350. doi: 10.1126/science.6310754. [DOI] [PubMed] [Google Scholar]
  14. Heinrich U. E., Schalch D. S., Koch J. G., Johnson C. J. Nonsuppressible insulin-like activity (NSILA). II. Regulation of serum concentrations by growth hormone and insulin. J Clin Endocrinol Metab. 1978 Apr;46(4):672–678. doi: 10.1210/jcem-46-4-672. [DOI] [PubMed] [Google Scholar]
  15. Jansen M., van Schaik F. M., Ricker A. T., Bullock B., Woods D. E., Gabbay K. H., Nussbaum A. L., Sussenbach J. S., Van den Brande J. L. Sequence of cDNA encoding human insulin-like growth factor I precursor. Nature. 1983 Dec 8;306(5943):609–611. doi: 10.1038/306609a0. [DOI] [PubMed] [Google Scholar]
  16. Ross R. The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J Cell Biol. 1971 Jul;50(1):172–186. doi: 10.1083/jcb.50.1.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Russell W. E., Van Wyk J. J., Pledger W. J. Inhibition of the mitogenic effects of plasma by a monoclonal antibody to somatomedin C. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2389–2392. doi: 10.1073/pnas.81.8.2389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schoenle E., Zapf J., Humbel R. E., Froesch E. R. Insulin-like growth factor I stimulates growth in hypophysectomized rats. Nature. 1982 Mar 18;296(5854):252–253. doi: 10.1038/296252a0. [DOI] [PubMed] [Google Scholar]
  19. Stout R. W., Bierman E. L., Ross R. Effect of insulin on the proliferation of cultured primate arterial smooth muscle cells. Circ Res. 1975 Feb;36(2):319–327. doi: 10.1161/01.res.36.2.319. [DOI] [PubMed] [Google Scholar]
  20. Svoboda M. E., Van Wyk J. J., Klapper D. G., Fellows R. E., Grissom F. E., Schlueter R. J. Purification of somatomedin-C from human plasma: chemical and biological properties, partial sequence analysis, and relationship to other somatomedins. Biochemistry. 1980 Feb 19;19(4):790–797. doi: 10.1021/bi00545a027. [DOI] [PubMed] [Google Scholar]
  21. Ullrich A., Berman C. H., Dull T. J., Gray A., Lee J. M. Isolation of the human insulin-like growth factor I gene using a single synthetic DNA probe. EMBO J. 1984 Feb;3(2):361–364. doi: 10.1002/j.1460-2075.1984.tb01812.x. [DOI] [PMC free article] [PubMed] [Google Scholar]