Linear diffusion of the restriction endonuclease EcoRV on DNA is essential for the in vivo function of the enzyme (original) (raw)

. 1996 Sep 16;15(18):5104–5111.

Abstract

Linear diffusion along DNA is a mechanism of enhancing the association rates of proteins to their specific recognition sites on DNA. It has been demonstrated for several proteins in vitro, but to date in no case in vivo. Here we show that the restriction endonuclease EcoRV slides along the DNA, scanning approximately 1000 bp in one binding event. This process is critically dependent on contacts between amino acid residues of the protein and the backbone of the DNA. The disruption of single hydrogen bonds and, in particular, the alteration of electrostatic interactions between amino acid side chains of the protein and phosphate groups of the DNA interfere with or abolish effective sliding. The efficiency of linear diffusion is dependent on salt concentration, having a maximum at 50 mM NaCl. These results suggest that a nonspecific and mobile binding mode capable of linear diffusion is dependent on a subtle balance of forces governing the interaction of the enzyme and the DNA. A strong correlation between the ability of EcoRV mutants to slide along the DNA in vitro and to protect Escherichia coli cells from phage infection demonstrates that linear diffusion occurs in vivo and is essential for effective phage restriction.

5104

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiken C. R., Fisher E. W., Gumport R. I. The specific binding, bending, and unwinding of DNA by RsrI endonuclease, an isoschizomer of EcoRI endonuclease. J Biol Chem. 1991 Oct 5;266(28):19063–19069. [PubMed] [Google Scholar]
  2. Alves J., Selent U., Wolfes H. Accuracy of the EcoRV restriction endonuclease: binding and cleavage studies with oligodeoxynucleotide substrates containing degenerate recognition sequences. Biochemistry. 1995 Sep 5;34(35):11191–11197. doi: 10.1021/bi00035a026. [DOI] [PubMed] [Google Scholar]
  3. Berg O. G., Winter R. B., von Hippel P. H. Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry. 1981 Nov 24;20(24):6929–6948. doi: 10.1021/bi00527a028. [DOI] [PubMed] [Google Scholar]
  4. Berg O. G., von Hippel P. H. Diffusion-controlled macromolecular interactions. Annu Rev Biophys Biophys Chem. 1985;14:131–160. doi: 10.1146/annurev.bb.14.060185.001023. [DOI] [PubMed] [Google Scholar]
  5. Berkhout B., van Wamel J. Accurate scanning of the BssHII endonuclease in search for its DNA cleavage site. J Biol Chem. 1996 Jan 26;271(4):1837–1840. doi: 10.1074/jbc.271.4.1837. [DOI] [PubMed] [Google Scholar]
  6. Cheng X., Balendiran K., Schildkraut I., Anderson J. E. Structure of PvuII endonuclease with cognate DNA. EMBO J. 1994 Sep 1;13(17):3927–3935. doi: 10.1002/j.1460-2075.1994.tb06708.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ehbrecht H. J., Pingoud A., Urbanke C., Maass G., Gualerzi C. Linear diffusion of restriction endonucleases on DNA. J Biol Chem. 1985 May 25;260(10):6160–6166. [PubMed] [Google Scholar]
  8. Frankel A. D., Ackers G. K., Smith H. O. Measurement of DNA-protein equilibria using gel chromatography: application to the HinfI restriction endonuclease. Biochemistry. 1985 Jun 4;24(12):3049–3054. doi: 10.1021/bi00333a037. [DOI] [PubMed] [Google Scholar]
  9. Goppelt M., Pingoud A., Maass G., Mayer H., Köster H., Frank R. The interaction of the EcoRI restriction endonuclease with its substrate. A physico-chemical study employing natural and synthetic oligonucleotides and polynucleotides. Eur J Biochem. 1980 Feb;104(1):101–107. doi: 10.1111/j.1432-1033.1980.tb04405.x. [DOI] [PubMed] [Google Scholar]
  10. Hamilton R. W., Lloyd R. S. Modulation of the DNA scanning activity of the Micrococcus luteus UV endonuclease. J Biol Chem. 1989 Oct 15;264(29):17422–17427. [PubMed] [Google Scholar]
  11. Heitman J. On the origins, structures and functions of restriction-modification enzymes. Genet Eng (N Y) 1993;15:57–108. doi: 10.1007/978-1-4899-1666-2_4. [DOI] [PubMed] [Google Scholar]
  12. Jack W. E., Terry B. J., Modrich P. Involvement of outside DNA sequences in the major kinetic path by which EcoRI endonuclease locates and leaves its recognition sequence. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4010–4014. doi: 10.1073/pnas.79.13.4010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jeltsch A., Alves J., Wolfes H., Maass G., Pingoud A. Pausing of the restriction endonuclease EcoRI during linear diffusion on DNA. Biochemistry. 1994 Aug 30;33(34):10215–10219. doi: 10.1021/bi00200a001. [DOI] [PubMed] [Google Scholar]
  14. Jeltsch A., Alves J., Wolfes H., Maass G., Pingoud A. Substrate-assisted catalysis in the cleavage of DNA by the EcoRI and EcoRV restriction enzymes. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8499–8503. doi: 10.1073/pnas.90.18.8499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jeltsch A., Fritz A., Alves J., Wolfes H., Pingoud A. A fast and accurate enzyme-linked immunosorbent assay for the determination of the DNA cleavage activity of restriction endonucleases. Anal Biochem. 1993 Sep;213(2):234–240. doi: 10.1006/abio.1993.1415. [DOI] [PubMed] [Google Scholar]
  16. Kabata H., Kurosawa O., Arai I., Washizu M., Margarson S. A., Glass R. E., Shimamoto N. Visualization of single molecules of RNA polymerase sliding along DNA. Science. 1993 Dec 3;262(5139):1561–1563. doi: 10.1126/science.8248804. [DOI] [PubMed] [Google Scholar]
  17. Kim Y. C., Grable J. C., Love R., Greene P. J., Rosenberg J. M. Refinement of Eco RI endonuclease crystal structure: a revised protein chain tracing. Science. 1990 Sep 14;249(4974):1307–1309. doi: 10.1126/science.2399465. [DOI] [PubMed] [Google Scholar]
  18. Kong X. P., Onrust R., O'Donnell M., Kuriyan J. Three-dimensional structure of the beta subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell. 1992 May 1;69(3):425–437. doi: 10.1016/0092-8674(92)90445-i. [DOI] [PubMed] [Google Scholar]
  19. Kostrewa D., Winkler F. K. Mg2+ binding to the active site of EcoRV endonuclease: a crystallographic study of complexes with substrate and product DNA at 2 A resolution. Biochemistry. 1995 Jan 17;34(2):683–696. doi: 10.1021/bi00002a036. [DOI] [PubMed] [Google Scholar]
  20. Krishna T. S., Kong X. P., Gary S., Burgers P. M., Kuriyan J. Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell. 1994 Dec 30;79(7):1233–1243. doi: 10.1016/0092-8674(94)90014-0. [DOI] [PubMed] [Google Scholar]
  21. Lesser D. R., Kurpiewski M. R., Jen-Jacobson L. The energetic basis of specificity in the Eco RI endonuclease--DNA interaction. Science. 1990 Nov 9;250(4982):776–786. doi: 10.1126/science.2237428. [DOI] [PubMed] [Google Scholar]
  22. Lloyd R. S., Hanawalt P. C., Dodson M. L. Processive action of T4 endonuclease V on ultraviolet-irradiated DNA. Nucleic Acids Res. 1980 Nov 11;8(21):5113–5127. doi: 10.1093/nar/8.21.5113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lu T., Gray H. B., Jr Kinetics and mechanism of BAL 31 nuclease action on small substrates and single-stranded DNA. Biochim Biophys Acta. 1995 Sep 6;1251(2):125–128. doi: 10.1016/0167-4838(95)00091-8. [DOI] [PubMed] [Google Scholar]
  24. Messer W., Noyer-Weidner M. Timing and targeting: the biological functions of Dam methylation in E. coli. Cell. 1988 Sep 9;54(6):735–737. doi: 10.1016/s0092-8674(88)90911-7. [DOI] [PubMed] [Google Scholar]
  25. Modrich P. Mechanisms and biological effects of mismatch repair. Annu Rev Genet. 1991;25:229–253. doi: 10.1146/annurev.ge.25.120191.001305. [DOI] [PubMed] [Google Scholar]
  26. Nardone G., George J., Chirikjian J. G. Differences in the kinetic properties of BamHI endonuclease and methylase with linear DNA substrates. J Biol Chem. 1986 Sep 15;261(26):12128–12133. [PubMed] [Google Scholar]
  27. Newman M., Strzelecka T., Dorner L. F., Schildkraut I., Aggarwal A. K. Structure of Bam HI endonuclease bound to DNA: partial folding and unfolding on DNA binding. Science. 1995 Aug 4;269(5224):656–663. doi: 10.1126/science.7624794. [DOI] [PubMed] [Google Scholar]
  28. Polyakov A., Severinova E., Darst S. A. Three-dimensional structure of E. coli core RNA polymerase: promoter binding and elongation conformations of the enzyme. Cell. 1995 Nov 3;83(3):365–373. doi: 10.1016/0092-8674(95)90114-0. [DOI] [PubMed] [Google Scholar]
  29. Richter P. H., Eigen M. Diffusion controlled reaction rates in spheroidal geometry. Application to repressor--operator association and membrane bound enzymes. Biophys Chem. 1974 Oct;2(3):255–263. doi: 10.1016/0301-4622(74)80050-5. [DOI] [PubMed] [Google Scholar]
  30. Sektas M., Kaczorowski T., Podhajska A. J. Interaction of the MboII restriction endonuclease with DNA. Gene. 1995 May 19;157(1-2):181–185. doi: 10.1016/0378-1119(94)00742-b. [DOI] [PubMed] [Google Scholar]
  31. Selent U., Rüter T., Köhler E., Liedtke M., Thielking V., Alves J., Oelgeschläger T., Wolfes H., Peters F., Pingoud A. A site-directed mutagenesis study to identify amino acid residues involved in the catalytic function of the restriction endonuclease EcoRV. Biochemistry. 1992 May 26;31(20):4808–4815. doi: 10.1021/bi00135a010. [DOI] [PubMed] [Google Scholar]
  32. Siksnys V., Pleckaityte M. Catalytic and binding properties of restriction endonuclease Cfr9I. Eur J Biochem. 1993 Oct 1;217(1):411–419. doi: 10.1111/j.1432-1033.1993.tb18260.x. [DOI] [PubMed] [Google Scholar]
  33. Singer P., Wu C. W. Promoter search by Escherichia coli RNA polymerase on a circular DNA template. J Biol Chem. 1987 Oct 15;262(29):14178–14189. [PubMed] [Google Scholar]
  34. Surby M. A., Reich N. O. Contribution of facilitated diffusion and processive catalysis to enzyme efficiency: implications for the EcoRI restriction-modification system. Biochemistry. 1996 Feb 20;35(7):2201–2208. doi: 10.1021/bi951883n. [DOI] [PubMed] [Google Scholar]
  35. Taylor J. D., Badcoe I. G., Clarke A. R., Halford S. E. EcoRV restriction endonuclease binds all DNA sequences with equal affinity. Biochemistry. 1991 Sep 10;30(36):8743–8753. doi: 10.1021/bi00100a005. [DOI] [PubMed] [Google Scholar]
  36. Terry B. J., Jack W. E., Modrich P. Facilitated diffusion during catalysis by EcoRI endonuclease. Nonspecific interactions in EcoRI catalysis. J Biol Chem. 1985 Oct 25;260(24):13130–13137. [PubMed] [Google Scholar]
  37. Thielking V., Alves J., Fliess A., Maass G., Pingoud A. Accuracy of the EcoRI restriction endonuclease: binding and cleavage studies with oligodeoxynucleotide substrates containing degenerate recognition sequences. Biochemistry. 1990 May 15;29(19):4682–4691. doi: 10.1021/bi00471a024. [DOI] [PubMed] [Google Scholar]
  38. Thielking V., Selent U., Köhler E., Landgraf A., Wolfes H., Alves J., Pingoud A. Mg2+ confers DNA binding specificity to the EcoRV restriction endonuclease. Biochemistry. 1992 Apr 21;31(15):3727–3732. doi: 10.1021/bi00130a001. [DOI] [PubMed] [Google Scholar]
  39. Thielking V., Selent U., Köhler E., Wolfes H., Pieper U., Geiger R., Urbanke C., Winkler F. K., Pingoud A. Site-directed mutagenesis studies with EcoRV restriction endonuclease to identify regions involved in recognition and catalysis. Biochemistry. 1991 Jul 2;30(26):6416–6422. doi: 10.1021/bi00240a011. [DOI] [PubMed] [Google Scholar]
  40. Vermote C. L., Halford S. E. EcoRV restriction endonuclease: communication between catalytic metal ions and DNA recognition. Biochemistry. 1992 Jul 7;31(26):6082–6089. doi: 10.1021/bi00141a018. [DOI] [PubMed] [Google Scholar]
  41. Vipond I. B., Halford S. E. Specific DNA recognition by EcoRV restriction endonuclease induced by calcium ions. Biochemistry. 1995 Jan 31;34(4):1113–1119. doi: 10.1021/bi00004a002. [DOI] [PubMed] [Google Scholar]
  42. Vipond I. B., Halford S. E. Structure-function correlation for the EcoRV restriction enzyme: from non-specific binding to specific DNA cleavage. Mol Microbiol. 1993 Jul;9(2):225–231. doi: 10.1111/j.1365-2958.1993.tb01685.x. [DOI] [PubMed] [Google Scholar]
  43. Wenz C., Jeltsch A., Pingoud A. Probing the indirect readout of the restriction enzyme EcoRV. Mutational analysis of contacts to the DNA backbone. J Biol Chem. 1996 Mar 8;271(10):5565–5573. doi: 10.1074/jbc.271.10.5565. [DOI] [PubMed] [Google Scholar]
  44. Wenz C., Selent U., Wende W., Jeltsch A., Wolfes H., Pingoud A. Protein engineering of the restriction endonuclease EcoRV: replacement of an amino acid residue in the DNA binding site leads to an altered selectivity towards unmodified and modified substrates. Biochim Biophys Acta. 1994 Sep 13;1219(1):73–80. doi: 10.1016/0167-4781(94)90248-8. [DOI] [PubMed] [Google Scholar]
  45. Winkler F. K., Banner D. W., Oefner C., Tsernoglou D., Brown R. S., Heathman S. P., Bryan R. K., Martin P. D., Petratos K., Wilson K. S. The crystal structure of EcoRV endonuclease and of its complexes with cognate and non-cognate DNA fragments. EMBO J. 1993 May;12(5):1781–1795. doi: 10.2210/pdb4rve/pdb. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Winter R. B., Berg O. G., von Hippel P. H. Diffusion-driven mechanisms of protein translocation on nucleic acids. 3. The Escherichia coli lac repressor--operator interaction: kinetic measurements and conclusions. Biochemistry. 1981 Nov 24;20(24):6961–6977. doi: 10.1021/bi00527a030. [DOI] [PubMed] [Google Scholar]
  47. Withers B. E., Dunbar J. C. DNA determinants in sequence-specific recognition by XmaI endonuclease. Nucleic Acids Res. 1995 Sep 11;23(17):3571–3577. doi: 10.1093/nar/23.17.3571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Woodhead J. L., Malcolm A. D. Non-specific binding of restriction endonuclease EcoR1 to DNA. Nucleic Acids Res. 1980 Jan 25;8(2):389–402. doi: 10.1093/nar/8.2.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zebala J. A., Choi J., Barany F. Characterization of steady state, single-turnover, and binding kinetics of the TaqI restriction endonuclease. J Biol Chem. 1992 Apr 25;267(12):8097–8105. [PubMed] [Google Scholar]
  50. von Hippel P. H., Berg O. G. Facilitated target location in biological systems. J Biol Chem. 1989 Jan 15;264(2):675–678. [PubMed] [Google Scholar]