Serotonin 1B receptors in the developing somatosensory and visual cortices are located on thalamocortical axons (original) (raw)

Abstract

Serotonin (5-HT)-immunoreactive axons are densely distributed in the primary visual and somatosensory cortices of rats, mice, and hamsters for the first 2 weeks of life, and a recent study from this laboratory has demonstrated that 5-HT1B receptors assume a pattern that exactly matches that of the serotoninergic axons. The differential distribution of these receptors is also transient. In the present study, we combined receptor binding autoradiography with neurochemical ablation of 5-HT axons or electrolytic lesions of the dorsal thalamus in an effort to determine the neural elements upon which the 5-HT1B receptors were located. Subcutaneous injections of the toxin 5,7-dihydroxytryptamine, made on the day of birth, totally eliminated the dense and patterned 5-HT innervation of the somatosensory and striate cortices of rats killed on postnatal day 8 but had no qualitative effect upon the distribution or density of 5-HT1B receptors in either of these cortical regions in animals killed at the same age. Conversely, electrolytic lesions of the dorsal thalamus made on postnatal day 6 resulted in a complete loss of the dense and patterned distribution of 5-HT1B receptors in rats killed on postnatal day 8. These results indicate that thalamocortical axons transiently express 5-HT1B receptors.

153

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett-Clarke C. A., Chiaia N. L., Crissman R. S., Rhoades R. W. The source of the transient serotoninergic input to the developing visual and somatosensory cortices in rat. Neuroscience. 1991;43(1):163–183. doi: 10.1016/0306-4522(91)90425-n. [DOI] [PubMed] [Google Scholar]
  2. Blue M. E., Erzurumlu R. S., Jhaveri S. A comparison of pattern formation by thalamocortical and serotonergic afferents in the rat barrel field cortex. Cereb Cortex. 1991 Sep-Oct;1(5):380–389. doi: 10.1093/cercor/1.5.380. [DOI] [PubMed] [Google Scholar]
  3. Bouhelal R., Smounya L., Bockaert J. 5-HT1B receptors are negatively coupled with adenylate cyclase in rat substantia nigra. Eur J Pharmacol. 1988 Jul 7;151(2):189–196. doi: 10.1016/0014-2999(88)90799-6. [DOI] [PubMed] [Google Scholar]
  4. Chiaia N. L., Bennett-Clarke C. A., Rhoades R. W. Effects of cortical and thalamic lesions upon primary afferent terminations, distributions of projection neurons, and the cytochrome oxidase pattern in the trigeminal brainstem complex. J Comp Neurol. 1991 Jan 22;303(4):600–616. doi: 10.1002/cne.903030407. [DOI] [PubMed] [Google Scholar]
  5. Chubakov A. R., Gromova E. A., Konovalov G. V., Sarkisova E. F., Chumasov E. I. The effects of serotonin on the morpho-functional development of rat cerebral neocortex in tissue culture. Brain Res. 1986 Mar 26;369(1-2):285–297. doi: 10.1016/0006-8993(86)90537-8. [DOI] [PubMed] [Google Scholar]
  6. Chumasov E. I., Chubakov A. R., Konovalov G. V., Gromova E. A. Vliianie serotonina na rost i differentsirovku kletochnykh élementov gippokampa v usloviiakh kul'tivirovaniia. Arkh Anat Gistol Embriol. 1978 Jan;74(1):98–106. [PubMed] [Google Scholar]
  7. D'Amato R. J., Blue M. E., Largent B. L., Lynch D. R., Ledbetter D. J., Molliver M. E., Snyder S. H. Ontogeny of the serotonergic projection to rat neocortex: transient expression of a dense innervation to primary sensory areas. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4322–4326. doi: 10.1073/pnas.84.12.4322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Erzurumlu R. S., Jhaveri S. Thalamic axons confer a blueprint of the sensory periphery onto the developing rat somatosensory cortex. Brain Res Dev Brain Res. 1990 Nov 1;56(2):229–234. doi: 10.1016/0165-3806(90)90087-f. [DOI] [PubMed] [Google Scholar]
  9. Fujimiya M., Kimura H., Maeda T. Postnatal development of serotonin nerve fibers in the somatosensory cortex of mice studied by immunohistochemistry. J Comp Neurol. 1986 Apr 8;246(2):191–201. doi: 10.1002/cne.902460205. [DOI] [PubMed] [Google Scholar]
  10. Goldberg J. I., Kater S. B. Expression and function of the neurotransmitter serotonin during development of the Helisoma nervous system. Dev Biol. 1989 Feb;131(2):483–495. doi: 10.1016/s0012-1606(89)80019-3. [DOI] [PubMed] [Google Scholar]
  11. Handa R. J., Hines M., Schoonmaker J. N., Shryne J. E., Gorski R. A. Evidence that serotonin is involved in the sexually dimorphic development of the preoptic area in the rat brain. Brain Res. 1986 Dec;395(2):278–282. doi: 10.1016/s0006-8993(86)80208-6. [DOI] [PubMed] [Google Scholar]
  12. Haydon P. G., McCobb D. P., Kater S. B. Serotonin selectively inhibits growth cone motility and synaptogenesis of specific identified neurons. Science. 1984 Nov 2;226(4674):561–564. doi: 10.1126/science.6093252. [DOI] [PubMed] [Google Scholar]
  13. Haydon P. G., McCobb D. P., Kater S. B. The regulation of neurite outgrowth, growth cone motility, and electrical synaptogenesis by serotonin. J Neurobiol. 1987 Mar;18(2):197–215. doi: 10.1002/neu.480180206. [DOI] [PubMed] [Google Scholar]
  14. Hole K. Behavior and brain growth in rats treated with p-chlorophenylalanine in the first weeks of life. Dev Psychobiol. 1972;5(2):157–173. doi: 10.1002/dev.420050209. [DOI] [PubMed] [Google Scholar]
  15. Killackey H. P., Leshin S. The organization of specific thalamocortical projections to the posteromedial barrel subfield of the rat somatic sensory cortex. Brain Res. 1975 Mar 28;86(3):469–472. doi: 10.1016/0006-8993(75)90897-5. [DOI] [PubMed] [Google Scholar]
  16. Leslie M. J., Bennett-Clarke C. A., Rhoades R. W. Serotonin 1B receptors form a transient vibrissa-related pattern in the primary somatosensory cortex of the developing rat. Brain Res Dev Brain Res. 1992 Sep 18;69(1):143–148. doi: 10.1016/0165-3806(92)90132-g. [DOI] [PubMed] [Google Scholar]
  17. Manaker S., Verderame H. M. Organization of serotonin 1A and 1B receptors in the nucleus of the solitary tract. J Comp Neurol. 1990 Nov 22;301(4):535–553. doi: 10.1002/cne.903010405. [DOI] [PubMed] [Google Scholar]
  18. Maura G., Raiteri M. Cholinergic terminals in rat hippocampus possess 5-HT1B receptors mediating inhibition of acetylcholine release. Eur J Pharmacol. 1986 Oct 7;129(3):333–337. doi: 10.1016/0014-2999(86)90443-7. [DOI] [PubMed] [Google Scholar]
  19. McCobb D. P., Cohan C. S., Connor J. A., Kater S. B. Interactive effects of serotonin and acetylcholine on neurite elongation. Neuron. 1988 Jul;1(5):377–385. doi: 10.1016/0896-6273(88)90187-0. [DOI] [PubMed] [Google Scholar]
  20. McCobb D. P., Haydon P. G., Kater S. B. Dopamine and serotonin inhibition of neurite elongation of different identified neurons. J Neurosci Res. 1988;19(1):19–26. doi: 10.1002/jnr.490190104. [DOI] [PubMed] [Google Scholar]
  21. Middlemiss D. N. Stereoselective blockade at [3H]5-HT binding sites and at the 5-HT autoreceptor by propranolol. Eur J Pharmacol. 1984 Jun 1;101(3-4):289–293. doi: 10.1016/0014-2999(84)90173-0. [DOI] [PubMed] [Google Scholar]
  22. Neale R. F., Fallon S. L., Boyar W. C., Wasley J. W., Martin L. L., Stone G. A., Glaeser B. S., Sinton C. M., Williams M. Biochemical and pharmacological characterization of CGS 12066B, a selective serotonin-1B agonist. Eur J Pharmacol. 1987 Apr 7;136(1):1–9. doi: 10.1016/0014-2999(87)90772-2. [DOI] [PubMed] [Google Scholar]
  23. Van der Loos H., Woolsey T. A. Somatosensory cortex: structural alterations following early injury to sense organs. Science. 1973 Jan 26;179(4071):395–398. doi: 10.1126/science.179.4071.395. [DOI] [PubMed] [Google Scholar]
  24. Waeber C., Palacios J. M. 5-HT1 receptor binding sites in the guinea pig superior colliculus are predominantly of the 5-HT1D class and are presynaptically located on primary retinal afferents. Brain Res. 1990 Oct 1;528(2):207–211. doi: 10.1016/0006-8993(90)91659-5. [DOI] [PubMed] [Google Scholar]
  25. Whitaker-Azmitia P. M., Azmitia E. C. Autoregulation of fetal serotonergic neuronal development: role of high affinity serotonin receptors. Neurosci Lett. 1986 Jun 30;67(3):307–312. doi: 10.1016/0304-3940(86)90327-7. [DOI] [PubMed] [Google Scholar]
  26. Whitaker-Azmitia P. M., Lauder J. M., Shemmer A., Azmitia E. C. Postnatal changes in serotonin receptors following prenatal alterations in serotonin levels: further evidence for functional fetal serotonin receptors. Brain Res. 1987 Jun;430(2):285–289. doi: 10.1016/0165-3806(87)90161-1. [DOI] [PubMed] [Google Scholar]
  27. Woolsey T. A., Van der Loos H. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 1970 Jan 20;17(2):205–242. doi: 10.1016/0006-8993(70)90079-x. [DOI] [PubMed] [Google Scholar]
  28. Wu S. Y., Wang M. Y., Dun N. J. Serotonin via presynaptic 5-HT1 receptors attenuates synaptic transmission to immature rat motoneurons in vitro. Brain Res. 1991 Jul 19;554(1-2):111–121. doi: 10.1016/0006-8993(91)90178-x. [DOI] [PubMed] [Google Scholar]