Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions (original) (raw)

Abstract

To determine whether oxidized LDL enhances atherogenesis by promoting monocyte recruitment into the vascular intima, we investigated whether LDL accumulation and oxidation precede intimal accumulation of monocytes in human fetal aortas (from spontaneous abortions and premature newborns who died within 12 h; fetal age 6.2+/-1.3 mo). For this purpose, a systematic assessment of fatty streak formation was carried out in fetal aortas from normocholesterolemic mothers (n = 22), hypercholesterolemic mothers (n = 33), and mothers who were hypercholesterolemic only during pregnancy (n = 27). Fetal plasma cholesterol levels showed a strong inverse correlation with fetal age (R = -0.88, P < 0.0001). In fetuses younger than 6 mo, fetal plasma cholesterol levels correlated with maternal ones (R = 0.86, P = 0.001), whereas in older fetuses no such correlation existed. Fetal aortas from hypercholesterolemic mothers and mothers with temporary hypercholesterolemia contained significantly more and larger lesions (758,651+/-87,449 and 451,255+/-37,448 micron2 per section, respectively; mean+/-SD) than aortas from normocholesterolemic mothers (61,862+/-9,555 micron2; P < 0.00005). Serial sections of the arch, thoracic, and abdominal aortas were immunostained for recognized markers of atherosclerosis: macrophages, apo B, and two different oxidation-specific epitopes (malondialdehyde- and 4-hydroxynonenal-lysine). Of the atherogenic sites that showed positive immunostaining for at least one of these markers, 58.6% were established lesions containing both macrophage/foam cells and oxidized LDL (OxLDL). 17.3% of all sites contained only native LDL, and 13.3% contained only OxLDL without monocyte/ macrophages. In contrast, only 4.3% of sites contained isolated monocytes in the absence of native or oxidized LDL. In addition, 6.3% of sites contained LDL and macrophages but few oxidation-specific epitopes. These results demonstrate that LDL oxidation and formation of fatty streaks occurs already during fetal development, and that both phenomena are greatly enhanced by maternal hypercholesterolemia. The fact that in very early lesions LDL and OxLDL are frequently found in the absence of monocyte/macrophages, whereas the opposite is rare, suggests that intimal LDL accumulation and oxidation contributes to monocyte recruitment in vivo.

Full Text

The Full Text of this article is available as a PDF (689.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambrosio G., Oriente A., Napoli C., Palumbo G., Chiariello P., Marone G., Condorelli M., Chiariello M., Triggiani M. Oxygen radicals inhibit human plasma acetylhydrolase, the enzyme that catabolizes platelet-activating factor. J Clin Invest. 1994 Jun;93(6):2408–2416. doi: 10.1172/JCI117248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Azen S. P., Qian D., Mack W. J., Sevanian A., Selzer R. H., Liu C. R., Liu C. H., Hodis H. N. Effect of supplementary antioxidant vitamin intake on carotid arterial wall intima-media thickness in a controlled clinical trial of cholesterol lowering. Circulation. 1996 Nov 15;94(10):2369–2372. doi: 10.1161/01.cir.94.10.2369. [DOI] [PubMed] [Google Scholar]
  3. Belknap W. M., Dietschy J. M. Sterol synthesis and low density lipoprotein clearance in vivo in the pregnant rat, placenta, and fetus. Sources for tissue cholesterol during fetal development. J Clin Invest. 1988 Dec;82(6):2077–2085. doi: 10.1172/JCI113829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berliner J. A., Navab M., Fogelman A. M., Frank J. S., Demer L. L., Edwards P. A., Watson A. D., Lusis A. J. Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation. 1995 May 1;91(9):2488–2496. doi: 10.1161/01.cir.91.9.2488. [DOI] [PubMed] [Google Scholar]
  5. Björkhem I., Henriksson-Freyschuss A., Breuer O., Diczfalusy U., Berglund L., Henriksson P. The antioxidant butylated hydroxytoluene protects against atherosclerosis. Arterioscler Thromb. 1991 Jan-Feb;11(1):15–22. doi: 10.1161/01.atv.11.1.15. [DOI] [PubMed] [Google Scholar]
  6. Blankenhorn D. H., Hodis H. N. George Lyman Duff Memorial Lecture. Arterial imaging and atherosclerosis reversal. Arterioscler Thromb. 1994 Feb;14(2):177–192. doi: 10.1161/01.atv.14.2.177. [DOI] [PubMed] [Google Scholar]
  7. Boyd H. C., Gown A. M., Wolfbauer G., Chait A. Direct evidence for a protein recognized by a monoclonal antibody against oxidatively modified LDL in atherosclerotic lesions from a Watanabe heritable hyperlipidemic rabbit. Am J Pathol. 1989 Nov;135(5):815–825. [PMC free article] [PubMed] [Google Scholar]
  8. Brooks C. J., Steel G., Gilbert J. D., Harland W. A. Lipids of human atheroma. 4. Characterisation of a new group of polar sterol esters from human atherosclerotic plaques. Atherosclerosis. 1971 Mar-Apr;13(2):223–237. doi: 10.1016/0021-9150(71)90025-6. [DOI] [PubMed] [Google Scholar]
  9. Carew T. E., Schwenke D. C., Steinberg D. Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7725–7729. doi: 10.1073/pnas.84.21.7725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Carpenter K. L., Taylor S. E., van der Veen C., Williamson B. K., Ballantine J. A., Mitchinson M. J. Lipids and oxidised lipids in human atherosclerotic lesions at different stages of development. Biochim Biophys Acta. 1995 May 17;1256(2):141–150. doi: 10.1016/0005-2760(94)00247-v. [DOI] [PubMed] [Google Scholar]
  11. Chisolm G. M., Ma G., Irwin K. C., Martin L. L., Gunderson K. G., Linberg L. F., Morel D. W., DiCorleto P. E. 7 beta-hydroperoxycholest-5-en-3 beta-ol, a component of human atherosclerotic lesions, is the primary cytotoxin of oxidized human low density lipoprotein. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11452–11456. doi: 10.1073/pnas.91.24.11452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. D'Armiento F. P., Di Gregorio F., Ciafrè S. A., Posca T., Liguori A., Napoli C., Colasanti P., Calì A., Vecchione R. Histological findings and evidence of lipid conjugated dienes and malonyldialdehyde in human fetal aortas. Acta Paediatr. 1993 Oct;82(10):823–828. doi: 10.1111/j.1651-2227.1993.tb17620.x. [DOI] [PubMed] [Google Scholar]
  13. Faggiotto A., Ross R. Studies of hypercholesterolemia in the nonhuman primate. II. Fatty streak conversion to fibrous plaque. Arteriosclerosis. 1984 Jul-Aug;4(4):341–356. doi: 10.1161/01.atv.4.4.341. [DOI] [PubMed] [Google Scholar]
  14. Faruqi R., de la Motte C., DiCorleto P. E. Alpha-tocopherol inhibits agonist-induced monocytic cell adhesion to cultured human endothelial cells. J Clin Invest. 1994 Aug;94(2):592–600. doi: 10.1172/JCI117374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fruebis J., Carew T. E., Palinski W. Effect of vitamin E on atherogenesis in LDL receptor-deficient rabbits. Atherosclerosis. 1995 Oct;117(2):217–224. doi: 10.1016/0021-9150(95)05574-g. [DOI] [PubMed] [Google Scholar]
  16. Fruebis J., Gonzalez V., Silvestre M., Palinski W. Effect of probucol treatment on gene expression of VCAM-1, MCP-1, and M-CSF in the aortic wall of LDL receptor-deficient rabbits during early atherogenesis. Arterioscler Thromb Vasc Biol. 1997 Jul;17(7):1289–1302. doi: 10.1161/01.atv.17.7.1289. [DOI] [PubMed] [Google Scholar]
  17. Fruebis J., Steinberg D., Dresel H. A., Carew T. E. A comparison of the antiatherogenic effects of probucol and of a structural analogue of probucol in low density lipoprotein receptor-deficient rabbits. J Clin Invest. 1994 Jul;94(1):392–398. doi: 10.1172/JCI117334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. GLAVIND J., HARTMANN S., CLEMMESEN J., JESSEN K. E., DAM H. Studies on the role of lipoperoxides in human pathology. II. The presence of peroxidized lipids in the atherosclerotic aorta. Acta Pathol Microbiol Scand. 1952;30(1):1–6. doi: 10.1111/j.1699-0463.1952.tb00157.x. [DOI] [PubMed] [Google Scholar]
  19. Gown A. M., Tsukada T., Ross R. Human atherosclerosis. II. Immunocytochemical analysis of the cellular composition of human atherosclerotic lesions. Am J Pathol. 1986 Oct;125(1):191–207. [PMC free article] [PubMed] [Google Scholar]
  20. Haberland M. E., Fong D., Cheng L. Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Science. 1988 Jul 8;241(4862):215–218. doi: 10.1126/science.2455346. [DOI] [PubMed] [Google Scholar]
  21. Hammer A., Kager G., Dohr G., Rabl H., Ghassempur I., Jürgens G. Generation, characterization, and histochemical application of monoclonal antibodies selectively recognizing oxidatively modified apoB-containing serum lipoproteins. Arterioscler Thromb Vasc Biol. 1995 May;15(5):704–713. doi: 10.1161/01.atv.15.5.704. [DOI] [PubMed] [Google Scholar]
  22. Heitzer T., Just H., Münzel T. Antioxidant vitamin C improves endothelial dysfunction in chronic smokers. Circulation. 1996 Jul 1;94(1):6–9. doi: 10.1161/01.cir.94.1.6. [DOI] [PubMed] [Google Scholar]
  23. Hubel C. A., Roberts J. M., Taylor R. N., Musci T. J., Rogers G. M., McLaughlin M. K. Lipid peroxidation in pregnancy: new perspectives on preeclampsia. Am J Obstet Gynecol. 1989 Oct;161(4):1025–1034. doi: 10.1016/0002-9378(89)90778-3. [DOI] [PubMed] [Google Scholar]
  24. Hörkkö S., Miller E., Branch D. W., Palinski W., Witztum J. L. The epitopes for some antiphospholipid antibodies are adducts of oxidized phospholipid and beta2 glycoprotein 1 (and other proteins). Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10356–10361. doi: 10.1073/pnas.94.19.10356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hörkkö S., Miller E., Dudl E., Reaven P., Curtiss L. K., Zvaifler N. J., Terkeltaub R., Pierangeli S. S., Branch D. W., Palinski W. Antiphospholipid antibodies are directed against epitopes of oxidized phospholipids. Recognition of cardiolipin by monoclonal antibodies to epitopes of oxidized low density lipoprotein. J Clin Invest. 1996 Aug 1;98(3):815–825. doi: 10.1172/JCI118854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Jha P., Flather M., Lonn E., Farkouh M., Yusuf S. The antioxidant vitamins and cardiovascular disease. A critical review of epidemiologic and clinical trial data. Ann Intern Med. 1995 Dec 1;123(11):860–872. doi: 10.7326/0003-4819-123-11-199512010-00009. [DOI] [PubMed] [Google Scholar]
  27. Khan B. V., Parthasarathy S. S., Alexander R. W., Medford R. M. Modified low density lipoprotein and its constituents augment cytokine-activated vascular cell adhesion molecule-1 gene expression in human vascular endothelial cells. J Clin Invest. 1995 Mar;95(3):1262–1270. doi: 10.1172/JCI117776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kritchevsky S. B., Shimakawa T., Tell G. S., Dennis B., Carpenter M., Eckfeldt J. H., Peacher-Ryan H., Heiss G. Dietary antioxidants and carotid artery wall thickness. The ARIC Study. Atherosclerosis Risk in Communities Study. Circulation. 1995 Oct 15;92(8):2142–2150. doi: 10.1161/01.cir.92.8.2142. [DOI] [PubMed] [Google Scholar]
  29. Kühn H., Belkner J., Wiesner R., Schewe T., Lankin V. Z., Tikhaze A. K. Structure elucidation of oxygenated lipids in human atherosclerotic lesions. Eicosanoids. 1992;5(1):17–22. [PubMed] [Google Scholar]
  30. Mancini F. P., Newland D. L., Mooser V., Murata J., Marcovina S., Young S. G., Hammer R. E., Sanan D. A., Hobbs H. H. Relative contributions of apolipoprotein(a) and apolipoprotein-B to the development of fatty lesions in the proximal aorta of mice. Arterioscler Thromb Vasc Biol. 1995 Nov;15(11):1911–1916. doi: 10.1161/01.atv.15.11.1911. [DOI] [PubMed] [Google Scholar]
  31. Napoli C., Ambrosio G., Scarpato N., Corso G., Palumbo G., D'Armiento F. P., Mancini F. P., Malorni A., Formisano S., Ruocco A. Decreased low-density lipoprotein oxidation after repeated selective apheresis in homozygous familial hypercholesterolemia. Am Heart J. 1997 May;133(5):585–595. doi: 10.1016/s0002-8703(97)70155-8. [DOI] [PubMed] [Google Scholar]
  32. Napoli C., Postiglione A., Triggiani M., Corso G., Palumbo G., Carbone V., Ruocco A., Ambrosio G., Montefusco S., Malorni A. Oxidative structural modifications of low density lipoprotein in homozygous familial hypercholesterolemia. Atherosclerosis. 1995 Dec;118(2):259–273. doi: 10.1016/0021-9150(95)05612-2. [DOI] [PubMed] [Google Scholar]
  33. Neary R. H., Kilby M. D., Kumpatula P., Game F. L., Bhatnagar D., Durrington P. N., O'Brien P. M. Fetal and maternal lipoprotein metabolism in human pregnancy. Clin Sci (Lond) 1995 Mar;88(3):311–318. doi: 10.1042/cs0880311. [DOI] [PubMed] [Google Scholar]
  34. Ohara Y., Peterson T. E., Harrison D. G. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest. 1993 Jun;91(6):2546–2551. doi: 10.1172/JCI116491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Palinski W., Hörkkö S., Miller E., Steinbrecher U. P., Powell H. C., Curtiss L. K., Witztum J. L. Cloning of monoclonal autoantibodies to epitopes of oxidized lipoproteins from apolipoprotein E-deficient mice. Demonstration of epitopes of oxidized low density lipoprotein in human plasma. J Clin Invest. 1996 Aug 1;98(3):800–814. doi: 10.1172/JCI118853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Palinski W., Ord V. A., Plump A. S., Breslow J. L., Steinberg D., Witztum J. L. ApoE-deficient mice are a model of lipoprotein oxidation in atherogenesis. Demonstration of oxidation-specific epitopes in lesions and high titers of autoantibodies to malondialdehyde-lysine in serum. Arterioscler Thromb. 1994 Apr;14(4):605–616. doi: 10.1161/01.atv.14.4.605. [DOI] [PubMed] [Google Scholar]
  37. Palinski W., Rosenfeld M. E., Ylä-Herttuala S., Gurtner G. C., Socher S. S., Butler S. W., Parthasarathy S., Carew T. E., Steinberg D., Witztum J. L. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1372–1376. doi: 10.1073/pnas.86.4.1372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Palinski W., Tangirala R. K., Miller E., Young S. G., Witztum J. L. Increased autoantibody titers against epitopes of oxidized LDL in LDL receptor-deficient mice with increased atherosclerosis. Arterioscler Thromb Vasc Biol. 1995 Oct;15(10):1569–1576. doi: 10.1161/01.atv.15.10.1569. [DOI] [PubMed] [Google Scholar]
  39. Palinski W., Ylä-Herttuala S., Rosenfeld M. E., Butler S. W., Socher S. A., Parthasarathy S., Curtiss L. K., Witztum J. L. Antisera and monoclonal antibodies specific for epitopes generated during oxidative modification of low density lipoprotein. Arteriosclerosis. 1990 May-Jun;10(3):325–335. doi: 10.1161/01.atv.10.3.325. [DOI] [PubMed] [Google Scholar]
  40. Prasad K., Kalra J. Oxygen free radicals and hypercholesterolemic atherosclerosis: effect of vitamin E. Am Heart J. 1993 Apr;125(4):958–973. doi: 10.1016/0002-8703(93)90102-f. [DOI] [PubMed] [Google Scholar]
  41. Radomski M. W., Moncada S. Regulation of vascular homeostasis by nitric oxide. Thromb Haemost. 1993 Jul 1;70(1):36–41. [PubMed] [Google Scholar]
  42. Rosenfeld M. E., Palinski W., Ylä-Herttuala S., Butler S., Witztum J. L. Distribution of oxidation specific lipid-protein adducts and apolipoprotein B in atherosclerotic lesions of varying severity from WHHL rabbits. Arteriosclerosis. 1990 May-Jun;10(3):336–349. doi: 10.1161/01.atv.10.3.336. [DOI] [PubMed] [Google Scholar]
  43. Sasahara M., Raines E. W., Chait A., Carew T. E., Steinberg D., Wahl P. W., Ross R. Inhibition of hypercholesterolemia-induced atherosclerosis in the nonhuman primate by probucol. I. Is the extent of atherosclerosis related to resistance of LDL to oxidation? J Clin Invest. 1994 Jul;94(1):155–164. doi: 10.1172/JCI117301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Schwenke D. C., Carew T. E. Initiation of atherosclerotic lesions in cholesterol-fed rabbits. I. Focal increases in arterial LDL concentration precede development of fatty streak lesions. Arteriosclerosis. 1989 Nov-Dec;9(6):895–907. doi: 10.1161/01.atv.9.6.895. [DOI] [PubMed] [Google Scholar]
  45. Sparrow C. P., Doebber T. W., Olszewski J., Wu M. S., Ventre J., Stevens K. A., Chao Y. S. Low density lipoprotein is protected from oxidation and the progression of atherosclerosis is slowed in cholesterol-fed rabbits by the antioxidant N,N'-diphenyl-phenylenediamine. J Clin Invest. 1992 Jun;89(6):1885–1891. doi: 10.1172/JCI115793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Stary H. C., Blankenhorn D. H., Chandler A. B., Glagov S., Insull W., Jr, Richardson M., Rosenfeld M. E., Schaffer S. A., Schwartz C. J., Wagner W. D. A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1992 Jan;85(1):391–405. doi: 10.1161/01.cir.85.1.391. [DOI] [PubMed] [Google Scholar]
  47. Stary H. C., Chandler A. B., Glagov S., Guyton J. R., Insull W., Jr, Rosenfeld M. E., Schaffer S. A., Schwartz C. J., Wagner W. D., Wissler R. W. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1994 May;89(5):2462–2478. doi: 10.1161/01.cir.89.5.2462. [DOI] [PubMed] [Google Scholar]
  48. Stary H. C. Composition and classification of human atherosclerotic lesions. Virchows Arch A Pathol Anat Histopathol. 1992;421(4):277–290. doi: 10.1007/BF01660974. [DOI] [PubMed] [Google Scholar]
  49. Tangirala R. K., Casanada F., Miller E., Witztum J. L., Steinberg D., Palinski W. Effect of the antioxidant N,N'-diphenyl 1,4-phenylenediamine (DPPD) on atherosclerosis in apoE-deficient mice. Arterioscler Thromb Vasc Biol. 1995 Oct;15(10):1625–1630. doi: 10.1161/01.atv.15.10.1625. [DOI] [PubMed] [Google Scholar]
  50. Walldius G., Erikson U., Olsson A. G., Bergstrand L., Hådell K., Johansson J., Kaijser L., Lassvik C., Mölgaard J., Nilsson S. The effect of probucol on femoral atherosclerosis: the Probucol Quantitative Regression Swedish Trial (PQRST). Am J Cardiol. 1994 Nov 1;74(9):875–883. doi: 10.1016/0002-9149(94)90579-7. [DOI] [PubMed] [Google Scholar]
  51. Witztum J. L., Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest. 1991 Dec;88(6):1785–1792. doi: 10.1172/JCI115499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Ylä-Herttuala S., Palinski W., Rosenfeld M. E., Parthasarathy S., Carew T. E., Butler S., Witztum J. L., Steinberg D. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest. 1989 Oct;84(4):1086–1095. doi: 10.1172/JCI114271. [DOI] [PMC free article] [PubMed] [Google Scholar]