Identification of essential components of the S. cerevisiae kinetochore (original) (raw)

Abstract

We have designed and utilized two in vivo assays of kinetochore integrity in S. cerevisiae. One assay detects relaxation of a transcription block formed at centromeres; the other detects an increase in the mitotic stability of a dicentric test chromosome. ctf13-30 and ctf14-42 were identified as putative kinetochore mutants by both assays. CTF14 is identical to NDC10CBF2, a recently identified essential gene that encodes a 110 kd kinetochore component. CTF13 is an essential gene that encodes a predicted 478 amino acid protein with no homology to known proteins. ctf13 mutants missegregate chromosomes at permissive temperature and transiently arrest at nonpermissive temperature as large-budded cells with a G2 DNA content and a short spindle. Antibodies recognizing epitope-tagged CTF13 protein decrease the electrophoretic mobility of a CEN DNA-protein complex formed in vitro. Together, the genetic and biochemical data indicate that CTF13 is an essential kinetochore protein.

References

  1. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Baker R., Masison D. Isolation of the gene encoding the Saccharomyces cerevisiae centromere-binding protein CP1. Mol. Cell. Biol. 1990;10:2458–2467. doi: 10.1128/mcb.10.6.2458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bernat R.L., Borisy G.G., Rothfield N.F., Earnshaw W.C. Injection of anticentromere antibodies in interphase disrupts events required for chromosome movement in mitosis. J. Cell Biol. 1990;111:1519–1533. doi: 10.1083/jcb.111.4.1519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bloom K., Amaya E., Carbon J., Clarke L., Hill A., Yeh E. Chromatin conformation of yeast centromeres. J. Cell Biol. 1984;99:1559–1568. doi: 10.1083/jcb.99.5.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boeke J., Truehart J., Natsoulis G., Fink G. 5-Fluoro-orotic acid as a selective agent in yeast molecular genetics. Meth. Enzymol. 1987;154:164–175. doi: 10.1016/0076-6879(87)54076-9. [DOI] [PubMed] [Google Scholar]
  6. Cai M., Davis R.W. Yeast centromere binding protein CBF1, of the helix-loop-helix protein family, is required for chromosome stability and methionine prototrophy. Cell. 1990;61:437–446. doi: 10.1016/0092-8674(90)90525-j. [DOI] [PubMed] [Google Scholar]
  7. Carbon J., Clarke L. Centromere structure and function in budding and fission yeast. New Biologist. 1990;2:10–19. [PubMed] [Google Scholar]
  8. Carle G.F., Olson M. Separation of chromosomal DNA molecules from yeast by orthogonal-field-alteration gel electrophoresis. Nuci. Acids Res. 1984;12:5647–5665. doi: 10.1093/nar/12.14.5647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cellini A., Parker R., McMahon J., Guthrie C., Rossi J. Activation of a TACTAAC box in the Saccharomyces cerevisiae actin intron. Mol. Cell. Biol. 1986;6:1571–1578. doi: 10.1128/mcb.6.5.1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Clarke L., Carbon J. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature. 1980;287:504–509. doi: 10.1038/287504a0. [DOI] [PubMed] [Google Scholar]
  11. Cottarel G., Shero J., Hieter P., Hegemann J. A 125-base-pair CEN6 DNA fragment is sufficient for complete meiotic and mitotic centromere functions in Saccharomyces cerevisiae. Mol. Cell. Biol. 1989;9:3342–3349. doi: 10.1128/mcb.9.8.3342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Densmore L., Payne W., Fitzgerald-Hayes M. In vivo genomic footprint of a yeast centromere. Mol. Cell. Biol. 1991;11:154–165. doi: 10.1128/mcb.11.1.154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Feinberg A.P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 1984;132:6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  14. Field J., Nikawa J., Broek D., MacDonald B., Rogers L., Wilson I., Lerner R., Wigler M. Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. Mol. Cell. Biol. 1988;8:2159–2165. doi: 10.1128/mcb.8.5.2159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fitzgerald-Hayes M., Clarke L., Carbon J. Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell. 1982;29:235–244. doi: 10.1016/0092-8674(82)90108-8. [DOI] [PubMed] [Google Scholar]
  16. Funk M., Hegemann J., Philippsen P. Chromatin digestion with restriction endonucleases reveals 150–160 bp of protected DNA in the centromere of chromosome 14 in Saccharomyces cerevisiae. Mol. Gen. Genet. 1989;219:153–160. doi: 10.1007/BF00261171. [DOI] [PubMed] [Google Scholar]
  17. Gerring S., Connelly C., Hieter P. Positional mapping of genes by chromosome blotting and chromosome fragmentation. Meth. Enzymol. 1990;194:57–77. doi: 10.1016/0076-6879(91)94007-y. [DOI] [PubMed] [Google Scholar]
  18. Gerring S.L., Spencer F., Hieter P. The CHL1 (CTF1) gene product of Saccharomyces cerevisiae is important for chromosome transmission and normal cell cycle progression in G2M. EMBO J. 1990;9:4347–4358. doi: 10.1002/j.1460-2075.1990.tb07884.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Goh P.-Y., Kilmartin J. NDC10: a gene involved in chromosome segregation in S. cerevisiae. J. Cell Biol. 1993 doi: 10.1083/jcb.121.3.503. in press. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Haber J., Thorburn P. Healing of broken linear dicentric chromosomes in yeast. Genetics. 1984;106:207–226. doi: 10.1093/genetics/106.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hartwell L., Smith D. Altered fidelity of mitotic chromosome transmission in cell cycle mutants of S. cerevisiae. Genetics. 1985;110:381–395. doi: 10.1093/genetics/110.3.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hartwell L.H., Weinert T.A. Checkpoints: controls that ensure the order of cell cycle events. Science. 1989;246:629–634. doi: 10.1126/science.2683079. [DOI] [PubMed] [Google Scholar]
  23. Hattori M., Sakaki Y. Dideoxy sequencing method using denatured plasmid templates. Anal. Biochem. 1986;152:232–238. doi: 10.1016/0003-2697(86)90403-3. [DOI] [PubMed] [Google Scholar]
  24. Hegemann J., Shero J., Cottarel G., Philippsen P., Hieter P. Mutational analysis of centromere DNA from chromosome VI of Saccharomyces cerevisiae. Mol. Cell. Biol. 1988;8:2523–2535. doi: 10.1128/mcb.8.6.2523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Henikoff S. Unidirectional digestion with exonuclease III in DNA sequence analysis. Meth. Enzymol. 1987;155:156–165. doi: 10.1016/0076-6879(87)55014-5. [DOI] [PubMed] [Google Scholar]
  26. Hieter P., Pridmore D., Hegemann J.H., Thomas M., Davis R.W., Philippsen P. Functional selection and analysis of yeast centromeric DNA. Cell. 1985;42:913–921. doi: 10.1016/0092-8674(85)90287-9. [DOI] [PubMed] [Google Scholar]
  27. Hill A., Bloom K. Genetic manipulation of centromere function. Mol. Cell. Biol. 1987;7:2397–2405. doi: 10.1128/mcb.7.7.2397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hirano T., Funahashi S., Uemure T., Yanagida M. Isolation and characterization of Schizosaccharomyces pombe cut mutants that block nuclear division but not cytokinesis. EMBO J. 1986;5:2973–2979. doi: 10.1002/j.1460-2075.1986.tb04594.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Holm C., Goto T., Wang J.C., Botstein D. DNA topoisomerase II is required at the time of mitosis in yeast. Cell. 1985;41:553–563. doi: 10.1016/s0092-8674(85)80028-3. [DOI] [PubMed] [Google Scholar]
  30. Hoyt M.A., Stearns T., Botstein D. Chromosome instability mutants of Saccharomyces cerevisiae that are defective in microtubule-mediated processes. Mol. Cell. Biol. 1990;10:223–234. doi: 10.1128/mcb.10.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Hoyt M.A., Totis L., Roberts B.T. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell. 1991;66:507–517. doi: 10.1016/0092-8674(81)90014-3. [DOI] [PubMed] [Google Scholar]
  32. Hoyt M.A., Hee L., Loo K., Saunders W. Two Saccharomyces cerevisiae kinesin-related gene products required for mitotic spindle assembly. J. Cell Biol. 1992;118:109–120. doi: 10.1083/jcb.118.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Huffaker T.C., Thomas J.H., Botstein D. Diverse effects of β-tubulin mutations on microtubule formation and function. J. Cell Biol. 1988;106:1997–2010. doi: 10.1083/jcb.106.6.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Hyman A., Middleton K., Centola M., Mitchison T., Carbon J. Microtubule-motor activity of a yeast centromere-binding protein complex. Nature. 1992;359:533–536. doi: 10.1038/359533a0. [DOI] [PubMed] [Google Scholar]
  35. Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 1983;153:163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Jehn B., Niedenthal R., Hegemann J. In vivo analysis of the Saccharomyces cerevisiae centromere CDEIII sequence: requirements for mitotic chromosome segregation. Mol. Cell. Biol. 1991;11:5212–5221. doi: 10.1128/mcb.11.10.5212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Jiang W., Lechner J., Carbon J. Isolation and characterization of a gene (CBF2) specifying a protein component of the budding yeast kinetochore. J. Cell Biol. 1993 doi: 10.1083/jcb.121.3.513. in press. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Johnston M., Davis R. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 1984;4:1440–1448. doi: 10.1128/mcb.4.8.1440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Koshland D.H., Rutledge L., Fitzgerald-Hayes M., Hartwell L. A genetic analysis of dicentric minichromosomes in Saccharomyces cerevisiae. Cell. 1987;48:801–812. doi: 10.1016/0092-8674(87)90077-8. [DOI] [PubMed] [Google Scholar]
  40. Kouprina N., Tsouldze A., Koryabin M., Larionov V. Identification and genetic mapping of CHL genes controlling mitotic chromosome transmission in yeast. Yeast. 1993;9:11–19. doi: 10.1002/yea.320090103. [DOI] [PubMed] [Google Scholar]
  41. Lechner J., Carbon J. A 240 kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere. Cell. 1991;64:717–725. doi: 10.1016/0092-8674(91)90501-o. [DOI] [PubMed] [Google Scholar]
  42. Machamer C.E., Rose J.K. A specific transmembrane domain of a coronavirus E1 glycoprotein is required for its retention in the Golgi region. J. Cell Biol. 1987;105:1205–1214. doi: 10.1083/jcb.105.3.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Maine G., Sinha P., Tye B.-K. Mutants of S. cerevisiae defective in the maintenance of minichromosomes. Genetics. 1984;106:365–385. doi: 10.1093/genetics/106.3.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Mann C., Davis R. Vol. 80. 1983. Instability of dicentric plasmids in yeast; pp. 228–232. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. McCleod M., Craft S., Broach J. Identification of the crossover site during FLP-mediated recombination in the yeast plasmid 2 micron circle. Mol. Cell. Biol. 1986;6:3357–3367. doi: 10.1128/mcb.6.10.3357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Meeks-Wagner D., Wood J., Garvik B., Hartwell L.H. Isolation of two genes that affect mitotic chromosome transmission in S. cerevisiae. Cell. 1986;44:53–63. doi: 10.1016/0092-8674(86)90484-8. [DOI] [PubMed] [Google Scholar]
  47. Mellor J., Jiang W., Funk M., Rathjen J., Barnes C., Hiz T., Hegemann J., Philippsen P. CPF1, a yeast protein which functions in centromeres and promoters. EMBO J. 1990;9:4017–4026. doi: 10.1002/j.1460-2075.1990.tb07623.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Mullis K.B., Faloona F.A. Specific synthesis of DNA in vitro via a polymerase catalysed chain reaction. Meth. Enzymol. 1987;155:335–350. doi: 10.1016/0076-6879(87)55023-6. [DOI] [PubMed] [Google Scholar]
  49. Newlon C. Yeast chromosome replication and segregation. Microbiol. Rev. 1988;52:568–601. doi: 10.1128/mr.52.4.568-601.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Ng R., Carbon J. Mutational and in vitro protein-binding studies on centromere DNA from Saccharomyces cerevisiae. Mol. Cell. Biol. 1987;7:4522–4534. doi: 10.1128/mcb.7.12.4522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Palmer R., Koval M., Koshland D. The dynamics of chromosome movement in the budding yeast Saccharomyces cerevisiae. J. Cell Biol. 1989;109:3355–3366. doi: 10.1083/jcb.109.6.3355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Perier F., Carbon J. A colony color assay for Saccharomyces cerevisiae mutants defective in kinetochore structure and function. Genetics. 1992;132:39–51. doi: 10.1093/genetics/132.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Peterson J., Ris H. Electron microscope study of the spindle and chromosome movement in the yeast S. cerevisiae. J. Cell Sci. 1976;22:219–242. doi: 10.1242/jcs.22.2.219. [DOI] [PubMed] [Google Scholar]
  54. Pluta A.F., Cooke C.A., Earnshaw W.C. Structure of the human centromere at metaphase. Trends Biochem. Sci. 1990;15:181–185. doi: 10.1016/0968-0004(90)90158-8. [DOI] [PubMed] [Google Scholar]
  55. Pluta A.F., Saitoh N., Goldberg I., Earnshaw W.C. Identification of a subdomain of CENP-B that is necessary and sufficient for localization to the human centromere. J. Cell Biol. 1992;116:1081–1093. doi: 10.1083/jcb.116.5.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Rieder C.L. The formation, structure and composition of the mammalian kinetochore fiber. Int. Rev. Cytol. 1982;79:1–58. doi: 10.1016/s0074-7696(08)61672-1. [DOI] [PubMed] [Google Scholar]
  57. Rieder C.L., Alexander S.P. In: Mechanisms of Chromosome Distribution and Aneuploidy. Resnick M., Vig B., editors. Liss; New York: 1989. The attachment of chromosomes to the mitotic spindle and the production of aneuploidy in newt lung cells; pp. 185–194. [PubMed] [Google Scholar]
  58. Roof D.M., Meluh P.B., Rose M.D. Kinesin-related proteins required for assembly of the mitotic spindle. J. Cell Biol. 1992;118:95–108. doi: 10.1083/jcb.118.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Rose M.D., Winston F., Hieter P. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, New York: 1990. Methods in Yeast Genetics. [Google Scholar]
  60. Sanger F., Nicklen S., Coulson A.R. Vol. 74. 1977. DNA sequencing with chain-terminating inhibitors; pp. 5463–5467. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Saunders W.S., Hoyt M.A. Kinesin-related proteins required for structural integrity of the mitotic spindle. Cell. 1992;70:451–458. doi: 10.1016/0092-8674(92)90169-d. [DOI] [PubMed] [Google Scholar]
  62. Shero J., Koval M., Spencer F., Palmer R., Hieter P., Koshland D. Analysis of chromosome segregation in Saccharomyces cerevisiae. Meth. Enzymol. 1991;194:749–773. doi: 10.1016/0076-6879(91)94057-j. [DOI] [PubMed] [Google Scholar]
  63. Sikorski R.S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989;122:19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Spencer F., Connelly C., Lee S., Hieter P. In: Cancer Cells, Volume 6: Eukaryotic DNA Replication. Kelly T., Stillman B., editors. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, New York: 1988. Isolation and cloning of conditionally lethal chromosome transmission fidelity genes in Saccharomyces cerevisiae; pp. 441–452. [Google Scholar]
  65. Spencer F., Gerring S., Connelly C., Hieter P. Mitotic chromosome segregation fidelity mutants in Saccharomyces cerevisiae. Genetics. 1990;124:237–249. doi: 10.1093/genetics/124.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Spencer F., Hieter P. Vol. 89. 1992. Centromere DNA mutations induce a mitotic delay in Saccharomyces cerevisiae; pp. 8908–8912. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Vijayraghavan U., Parker R., Tamm J., Iimura Y., Rossi J., Abelson J., Guthrie C. Mutations in conserved intron sequences affect multiple steps in the yeast splicing pathway, particularly assembly of the spliceosome. EMBO J. 1986;5:1683–1695. doi: 10.1002/j.1460-2075.1986.tb04412.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Zinkowski R.P., Meyne J., Brinkley B.R. The centromere-kinetochore complex: a repeat subunit model. J. Cell Biol. 1991;113:1091–1110. doi: 10.1083/jcb.113.5.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Zirkle R. UV-microbeam irradiation of newt-cell cytoplasm: spindle destruction, false anaphase, and delay of true anaphase. Radiat. Res. 1970;41:516–537. [PubMed] [Google Scholar]