Molecular cloning of the gene encoding the putative polymerase of mouse hepatitis coronavirus, strain A59 (original) (raw)

Abstract

Complementary DNA (cDNA) libraries were constructed representing the genome RNA of the coronavirus mouse hepatitis virus, strain A59 (MHV-A59). From these libraries clones were selected to form a linear map across the entire gene A, the putative viral polymerase gene. This gene is approximately 23 kb in length, considerably larger than earlier estimates. Sequence analysis of the U terminal region of the genome indicates the presence of the 66-nucleotide leader that is found on all mRNAs. Secondary structure analysis of the 5′terminal region suggests that transcription of leader terminates in the region of nucleotide 66. The sequence of the first 2000 nucleotides is very similar to that reported for the closely related JHM strain of MHV and potentially encodes p28, a basic protein thought to be a component of the viral polymerase (L. Soe, C. K. Shieh, S. Baker, M. F. Chang, and M. M. C. Lai, 1987, J. Virol., 61, 3968–3976). Gene A contains two of the consensus sequences found in intergenic regions. One is adjacent to the 5′ leader sequence and the other is upstream from the initiation codon for translation of gene B.

References

  1. Armstrong J., Smeekens S., Rottier P.J.M. Sequence of the nucleocapsid gene from murine coronavirus MHV-A59. Nucleic Acids Res. 1983;11:883–891. doi: 10.1093/nar/11.3.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baric R.S., Shieh C.K., Stohlman S.A., Lai M.M.C. Studies into the mechanism of MHV transcription. In: Lai M.M.C., Stohlman S.A., editors. Vol. 218. Plenum; New York: 1987. pp. 137–149. (Coronaviruses. Advances in Experimental Medicine and Biology). [DOI] [PubMed] [Google Scholar]
  3. Baric R.S., Shieh C.K., Stohlman S.A., Lai M.M.C. Analysis of intracellular small RNAs of mouse hepatitis virus: Evidence for discontinuous transcription. Virology. 1987;156:342–354. doi: 10.1016/0042-6822(87)90414-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baric R.S., Stohlman S.A., Lai M.M.C. Characteristic of replicative intermediate RNA of mouse hepatitis virus: Presence of leader RNA sequences on nascent chains. J. Virol. 1983;48:633–640. doi: 10.1128/jvi.48.3.633-640.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baric R.S., Stohlman S.A., Razavi M.K., Lai M.M.C. Characterization of leader-related small RNAs in coronavirus-infected cells: Further evidence for leader-primed mechanism of transcription. Virus Res. 1985;3:19–33. doi: 10.1016/0168-1702(85)90038-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Biggins M.D., Gibson T.J., Hong G.F. Vol. 80. 1983. Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination; pp. 3963–3965. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Boursnell M.E.G., Brown T.D.K., Foulds I.J., Green P.H., Tomley F.M., Binns M.M. The complete sequence of the genome of avian infectious bronchitis virus. J. Gen. Virol. 1987;68:57–77. doi: 10.1099/0022-1317-68-1-57. [DOI] [PubMed] [Google Scholar]
  8. Brayton P.R., Lai M.M.C., Patton C.D., Stohlman S.A. Characterization of two RNA polymerase activities induced by mouse hepatitis virus. J. Virol. 1982;42:847–853. doi: 10.1128/jvi.42.3.847-853.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brayton P.R., Stohlman S.A., Lai M.M.C. Further characterization of mouse hepatitis virus RNA-dependent RNA polymerases. Virology. 1984;133:197–204. doi: 10.1016/0042-6822(84)90439-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brierly I., Boursnell M.E.G., Binns M.M., Bilimoria B., Blok V.C., Brown T.D.K., Inglis S.C. An efficient ribosomal frame-shifting signal in the polymerase encoding region of the cornavirus IBV. EMBO J. 1987;6:3779–3785. doi: 10.1002/j.1460-2075.1987.tb02713.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Brinton M.A., Dispoto J.H. Sequence and secondary structure analysis of the 5′ terminal region of the flavivirus genome RNA. Virology. 1988;162:290–299. doi: 10.1016/0042-6822(88)90468-0. [DOI] [PubMed] [Google Scholar]
  12. Budzilowicz C.B., Wilczynski S.P., Weiss S.R. Three intergenic regions of coronavirus mouse hepatitis virus strain A59 genome RNA contain a common nucleotide sequence that is homologous to the Tend of the viral mRNA leader sequence. J. Virol. 1985;53:834–840. doi: 10.1128/jvi.53.3.834-840.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Denison M.R., Perlman S. Translation and processing of mouse hepatitis virus virion RNA in a cell free system. J. Virol. 1986;60:12–18. doi: 10.1128/jvi.60.1.12-18.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Denison M.R., Perlman S. Identification of a putative polymerase gene product in cells infected with murine coronavirus A59. Virology. 1987;157:565–568. doi: 10.1016/0042-6822(87)90303-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gubler U., Hoffman B.J. A simple and very efficient method for generating cDNA libraries. Gene. 1983;25:263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  16. Henikoff S., Kelly J.D., Cohen E.H. Transcription terminates in yeast distal to a control sequences. Cell. 1983;33:607–614. doi: 10.1016/0092-8674(83)90441-5. [DOI] [PubMed] [Google Scholar]
  17. Jacks T., Varmus H.E. Expression of the Rous sarcoma virus pol gene by ribosomal frame shifting. Science. 1985;230:1237–1242. doi: 10.1126/science.2416054. [DOI] [PubMed] [Google Scholar]
  18. Lai M.M.C., Bark R.S., Brayton P.R., Stohlman S.A. Vol. 81. 1984. Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus-a cytoplasmic RNA virus; pp. 3626–3639. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lai M.M.C., Bark R.S., Making S., Keck J.G., Egbert J., Leibowitz J.L., Stohlman S.A. Recombination between nonsegmented RNA genomes of murine coronaviruses. J. Virol. 1985;56:449–456. doi: 10.1128/jvi.56.2.449-456.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lai M.M.C., Brayton P.R., Armen P.C., Patton C.D., Pugh C., Stohlman S.A. Mouse hepatitis virus A59: mRNA structure and localization of sequence divergence from hepatotropic strain MHV-3. J. Virol. 1981;39:823–834. doi: 10.1128/jvi.39.3.823-834.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lai M.M.C., Patton C.D., Baric R.S., Stohlman S.A. Further characterization of mRNA's of mouse hepatitis virus: Presence of common 5′-end nucleotides. J. Virol. 1983;46:1027–1033. [Google Scholar]
  22. Lai M.M.C., Stohlman S.A. RNA of mouse hepatitis virus. J. Virol. 1978;26:236–242. doi: 10.1128/jvi.26.2.236-242.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lehrach H., Diamond D., Wozney J.M., Boedtker H. RNA molecular weight determinations of gel electrophoresis under denaturing conditions: A critical reexamination. Biochemistry. 1977;96:4743–4751. doi: 10.1021/bi00640a033. [DOI] [PubMed] [Google Scholar]
  24. Leibowitz J.L., Weiss S.R., Paavola E., Bond C.W. Cell-free translation of murine coronavirus RNA. J. Virol. 1982;43:905–913. doi: 10.1128/jvi.43.3.905-913.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Leibowitz J.L., Wilhelmson D.C., Bond C.W. The virus-specific intracellular RNA species of two murine coronaviruses: MHV-A59 and MHV-JHM. Virology. 1981;114:39–51. doi: 10.1016/0042-6822(81)90250-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Levis R., Weiss B.G., Tsiang M., Huang H., Schlesinger S. Deletion mapping of Sindbis virus DI RNAs derived from cDNAs defines the sequences essential for replication and packaging. Cell. 1986;44:137–145. doi: 10.1016/0092-8674(86)90492-7. [DOI] [PubMed] [Google Scholar]
  27. Lomniczi B.J. Biological properties of avian coronavirus RNA. Gen. Virol. 1977;36:531–533. doi: 10.1099/0022-1317-36-3-531. [DOI] [PubMed] [Google Scholar]
  28. Luytjes W., Bredenbeek P.J., Noten A.F.S., Horzinek M.C., Spaan W.J.M. Sequence of mouse hepatitis virus A59 mRNA2: Indications for RNA recombination between coronaviruses and influenza C virus. Virology. 1988;166:415–422. doi: 10.1016/0042-6822(88)90512-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Luytjes W., Sturman L., Bredenbeek P.J., Chorite J., van der Zeijst B.A.M., Horzinek M.C., Spaan W.I.M. Primary structure of the glycoprotein E2 of mouse hepatitis virus strain A59 and identification of the trypsin cleavage site. Virology. 1987;161:479–487. doi: 10.1016/0042-6822(87)90142-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Making S., Stohlman S.A., Lai M.M.C. Vol. 83. 1986. Leader sequences of murine coronavirus RNAs can be freely reassorted: Evidence for the role of free leader RNA in transcription; pp. 4204–4208. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Manaker R.A., Piczak C.V., Miller A.A., Stanton M.F. A hepatitis virus complicating studies with murine leukemia virus. J. Natl. Cancer Inst. 1961;27:29–51. [PubMed] [Google Scholar]
  32. Maniatis T., Fritsch E.F., Sambrook J. Cold Spring Harbor Laboratory; Cold Spring Harbor, NY: 1982. (Molecular Cloning: A Laboratory Manual). [Google Scholar]
  33. Messing J., Crea R., Seeburg P.H. A system for shotgun DNA sequencing. Nucleic Acids Res. 1981;9:309–321. doi: 10.1093/nar/9.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Mills D.R., Dabkin C., Kramer F.R. Template determined, variable rate of chain elongation. Cell. 1980;15:541–550. doi: 10.1016/0092-8674(78)90022-3. [DOI] [PubMed] [Google Scholar]
  35. Rigby P.W.J., Dieckmann M., Rhodes C., Berg P. Labeling of deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol. 1977;113:237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  36. Sanger F., Nicklen S., Coulson A.R. Vol. 74. 1977. DNA sequencing with chain terminating inhibitors; pp. 5463–5467. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shieh C.K., Soe L., Making S., Chang M.F., Stohlman S.A., Lai M.M.C. The 5′ end sequence of the murine coronavirus genome: Implications for multiple fusion sites in leader primed transcription. Virology. 1987;156:321–330. doi: 10.1016/0042-6822(87)90412-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Soe L., Shieh C.K., Baker S., Chang M.F., Lai M.M.C. Sequence and translation of the murine coronavirus 5′-end genomic RNA reveals the N-terminal structure of the putative RNA polymerase. J. Virol. 1987;61:3968–3976. doi: 10.1128/jvi.61.12.3968-3976.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Southern E.M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 1975;98:503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  40. Spaan W.J.M., Cavanagh D., Horzinek M.C. Coronaviruses: Structure and genome expression. J. Gen. Virol. 1988;69:2939–2952. doi: 10.1099/0022-1317-69-12-2939. [DOI] [PubMed] [Google Scholar]
  41. Spaan W.J.M., Delius J., Skinner M.A., Armstrong J., Rottier P.J.W., Smeekens S., van der Zeijst B.A.M., Siddell S.G. Coronavirus mRNA synthesis involves the fusion of noncontiguous sequences. EMBO J. 1983;2:1839. doi: 10.1002/j.1460-2075.1983.tb01667.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Spaan W.J.M., Rottier P.J.M., Horzinek M.C., van der Zeijst B.A.M. Sequence relationship between the genome and intracellular RNA species 1, 3, 6 and 7 of mouse hepatitis virus strain A59. J. Virol. 1982;42:432–439. doi: 10.1128/jvi.42.2.432-439.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Thomas P. Vol. 77. 1980. Hybridization of RNA and small DNA fragments transferred to nitrocellulose; pp. 5201–5205. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Weiss S.R., Leibowitz J.L. Characterization of murine coronavirus RNA by hybridization with virus-specific cDNA probes. J. Gen. Virol. 1983;64:127–133. doi: 10.1099/0022-1317-64-1-127. [DOI] [PubMed] [Google Scholar]
  45. Zaret K.S., Sherman F. DNA sequences required for efficient transcription termination in yeast. Cell. 1982;28:563–573. doi: 10.1016/0092-8674(82)90211-2. [DOI] [PubMed] [Google Scholar]
  46. Zucker M., Steigler D. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 1981;9:133–148. doi: 10.1093/nar/9.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]