Assessing gene significance from cDNA microarray expression data via mixed models - PubMed (original) (raw)
Assessing gene significance from cDNA microarray expression data via mixed models
R D Wolfinger et al. J Comput Biol. 2001.
Abstract
The determination of a list of differentially expressed genes is a basic objective in many cDNA microarray experiments. We present a statistical approach that allows direct control over the percentage of false positives in such a list and, under certain reasonable assumptions, improves on existing methods with respect to the percentage of false negatives. The method accommodates a wide variety of experimental designs and can simultaneously assess significant differences between multiple types of biological samples. Two interconnected mixed linear models are central to the method and provide a flexible means to properly account for variability both across and within genes. The mixed model also provides a convenient framework for evaluating the statistical power of any particular experimental design and thus enables a researcher to a priori select an appropriate number of replicates. We also suggest some basic graphics for visualizing lists of significant genes. Analyses of published experiments studying human cancer and yeast cells illustrate the results.
Similar articles
- Possibilistic approach for biclustering microarray data.
Cano C, Adarve L, López J, Blanco A. Cano C, et al. Comput Biol Med. 2007 Oct;37(10):1426-36. doi: 10.1016/j.compbiomed.2007.01.005. Epub 2007 Mar 8. Comput Biol Med. 2007. PMID: 17346690 - The clustering of regression models method with applications in gene expression data.
Qin LX, Self SG. Qin LX, et al. Biometrics. 2006 Jun;62(2):526-33. doi: 10.1111/j.1541-0420.2005.00498.x. Biometrics. 2006. PMID: 16918917 - Hierarchical signature clustering for time series microarray data.
Koenig L, Youn E. Koenig L, et al. Adv Exp Med Biol. 2011;696:57-65. doi: 10.1007/978-1-4419-7046-6_6. Adv Exp Med Biol. 2011. PMID: 21431546 - Differential analysis of DNA microarray gene expression data.
Hatfield GW, Hung SP, Baldi P. Hatfield GW, et al. Mol Microbiol. 2003 Feb;47(4):871-7. doi: 10.1046/j.1365-2958.2003.03298.x. Mol Microbiol. 2003. PMID: 12581345 Review. - Toxicogenomics using yeast DNA microarrays.
Yasokawa D, Iwahashi H. Yasokawa D, et al. J Biosci Bioeng. 2010 Nov;110(5):511-22. doi: 10.1016/j.jbiosc.2010.06.003. Epub 2010 Jul 10. J Biosci Bioeng. 2010. PMID: 20624688 Review.
Cited by
- Evaluation of microarray data normalization procedures using spike-in experiments.
Rydén P, Andersson H, Landfors M, Näslund L, Hartmanová B, Noppa L, Sjöstedt A. Rydén P, et al. BMC Bioinformatics. 2006 Jun 14;7:300. doi: 10.1186/1471-2105-7-300. BMC Bioinformatics. 2006. PMID: 16774679 Free PMC article. - Intensity-based analysis of dual-color gene expression data as an alternative to ratio-based analysis to enhance reproducibility.
Bossers K, Ylstra B, Brakenhoff RH, Smeets SJ, Verhaagen J, van de Wiel MA. Bossers K, et al. BMC Genomics. 2010 Feb 17;11:112. doi: 10.1186/1471-2164-11-112. BMC Genomics. 2010. PMID: 20163706 Free PMC article. - Statistical issues in the design and analysis of gene expression microarray studies of animal models.
McShane LM, Shih JH, Michalowska AM. McShane LM, et al. J Mammary Gland Biol Neoplasia. 2003 Jul;8(3):359-74. doi: 10.1023/b:jomg.0000010035.57912.5a. J Mammary Gland Biol Neoplasia. 2003. PMID: 14973379 Review. - An expression-driven approach to the prediction of carbohydrate transport and utilization regulons in the hyperthermophilic bacterium Thermotoga maritima.
Conners SB, Montero CI, Comfort DA, Shockley KR, Johnson MR, Chhabra SR, Kelly RM. Conners SB, et al. J Bacteriol. 2005 Nov;187(21):7267-82. doi: 10.1128/JB.187.21.7267-7282.2005. J Bacteriol. 2005. PMID: 16237010 Free PMC article. - Associating phenotypes with molecular events: recent statistical advances and challenges underpinning microarray experiments.
Liang Y, Kelemen A. Liang Y, et al. Funct Integr Genomics. 2006 Jan;6(1):1-13. doi: 10.1007/s10142-005-0006-z. Epub 2005 Nov 15. Funct Integr Genomics. 2006. PMID: 16292543 Review.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases