Molecular mechanisms of H. pylori associated gastric carcinogenesis - PubMed (original) (raw)
Molecular mechanisms of H. pylori associated gastric carcinogenesis
Zun-Wu Zhang et al. World J Gastroenterol. 1999 Oct.
No abstract available
Figures
Figure 1
Long-term H. pylori infection may induce a repeated “damage-regeneration” process which gradually leads to gastric atrophy, intestinal metaplasia and finally carcinoma. A. H. pylori infected gastric mucosa with inflammatory cell infiltration. B. Gastric epithelial cells are damaged, become apoptotic and then are regenerated, with enhanced inflammatory cell infiltration and disturbance of mucus layer. C. Atrophy and intestinal metaplasia develop; fibrosis and thinning of the lamina propria; finally H. pylori is lost due to inhospitable mucosa. D. Gastric carcinoma is induced.
Figure 2
Possible molecular mechanisms of H. pylori associated carcinogenesis. H. pylori and its associated inflammatory responses cause reactivation of telomerase, the loss of p53 function and also induce CD95 and bax mediated apoptosis. CD95L produced by gastric epithelial cells m ay also cause intra-mucosal immunocyte apoptosis, which could facilitate tumor immune escape. However, mutated p53 may attenuate epithelial cell apoptosis, providing a possible selective advantage for tumor cell proliferation. Furthermore , p53 deficiency may cooperate with telomere dysfunction to accelerate carcinogenesis. All of these changes, together with host genetic factors may play important roles in the development of H. pylori associated carcinogenesis.
Similar articles
- Chemoprevention of Helicobacter pylori-associated gastric carcinogenesis in a mouse model: is it possible?
Hahm KB, Song YJ, Oh TY, Lee JS, Surh YJ, Kim YB, Yoo BM, Kim JH, Han SU, Nahm KT, Kim MW, Kim DY, Cho SW. Hahm KB, et al. J Biochem Mol Biol. 2003 Jan 31;36(1):82-94. doi: 10.5483/bmbrep.2003.36.1.082. J Biochem Mol Biol. 2003. PMID: 12542979 Review. - Identification of pathways related to FAF1/H. pylori-associated gastric carcinogenesis through an integrated approach based on iTRAQ quantification and literature review.
Chen J, Ge L, Liu A, Yuan Y, Ye J, Zhong J, Liu L, Chen X. Chen J, et al. J Proteomics. 2016 Jan 10;131:163-176. doi: 10.1016/j.jprot.2015.10.026. Epub 2015 Oct 24. J Proteomics. 2016. PMID: 26597625 Review. - PBX1 attributes as a determinant of connexin 32 downregulation in _Helicobacter pylori_-related gastric carcinogenesis.
Liu XM, Xu CX, Zhang LF, Huang LH, Hu TZ, Li R, Xia XJ, Xu LY, Luo L, Jiang XX, Li M. Liu XM, et al. World J Gastroenterol. 2017 Aug 7;23(29):5345-5355. doi: 10.3748/wjg.v23.i29.5345. World J Gastroenterol. 2017. PMID: 28839434 Free PMC article. - Exploration of gastric carcinogenesis from the relationship between bile acids and intestinal metaplasia and intragastric microorganisms (H. pylori and non-H. pylori).
Lei X, Cui ZY, Huang XJ. Lei X, et al. J Cancer Res Clin Oncol. 2023 Dec;149(18):16947-16956. doi: 10.1007/s00432-023-05407-5. Epub 2023 Sep 14. J Cancer Res Clin Oncol. 2023. PMID: 37707577 Review. - Helicobacter pylori induced gastric carcinogenesis - The best molecular model we have?
Link A, Bornschein J, Thon C. Link A, et al. Best Pract Res Clin Gastroenterol. 2021 Mar-Apr;50-51:101743. doi: 10.1016/j.bpg.2021.101743. Epub 2021 Mar 29. Best Pract Res Clin Gastroenterol. 2021. PMID: 33975683 Review.
Cited by
- A p53 genetic polymorphism of gastric cancer: difference between early gastric cancer and advanced gastric cancer.
Yi SY, Lee WJ. Yi SY, et al. World J Gastroenterol. 2006 Oct 28;12(40):6536-9. doi: 10.3748/wjg.v12.i40.6536. World J Gastroenterol. 2006. PMID: 17072987 Free PMC article. - Detection of serum anti-Helicobacter pylori immunoglobulin G in patients with different digestive malignant tumors.
Wang KX, Wang XF, Peng JL, Cui YB, Wang J, Li CP. Wang KX, et al. World J Gastroenterol. 2003 Nov;9(11):2501-4. doi: 10.3748/wjg.v9.i11.2501. World J Gastroenterol. 2003. PMID: 14606084 Free PMC article. - Glutathione S-transferases M1, T1 genotypes and the risk of gastric cancer: a case-control study.
Cai L, Yu SZ, Zhang ZF. Cai L, et al. World J Gastroenterol. 2001 Aug;7(4):506-9. doi: 10.3748/wjg.v7.i4.506. World J Gastroenterol. 2001. PMID: 11819818 Free PMC article. - Metallic nickel nanoparticles may exhibit higher carcinogenic potential than fine particles in JB6 cells.
Magaye R, Zhou Q, Bowman L, Zou B, Mao G, Xu J, Castranova V, Zhao J, Ding M. Magaye R, et al. PLoS One. 2014 Apr 1;9(4):e92418. doi: 10.1371/journal.pone.0092418. eCollection 2014. PLoS One. 2014. PMID: 24691273 Free PMC article. - Increased epithelial and serum expression of macrophage migration inhibitory factor (MIF) in gastric cancer: potential role of MIF in gastric carcinogenesis.
He XX, Yang J, Ding YW, Liu W, Shen QY, Xia HH. He XX, et al. Gut. 2006 Jun;55(6):797-802. doi: 10.1136/gut.2005.078113. Epub 2006 Feb 17. Gut. 2006. PMID: 16488898 Free PMC article.
References
- Farthing MJ. Helicobacter pylori infection: an overview. Br Med Bull. 1998;54:1–6. - PubMed
- Zhang ZW, Xing YY, Li SQ, Huang ZH. Seroepidemiological investigation of Helicobacter pylori infection in a Beijing population (in Chinese) Beijing Yixue. 1992;23:250–252.
- Watanabe T, Tada M, Nagai H, Sasaki S, Nakao M. Helicobacter pylori infection induces gastric cancer in mongolian gerbils. Gastroenterology. 1998;115:642–648. - PubMed
- Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–767. - PubMed
LinkOut - more resources
Full Text Sources