Development of the nervous system in the "head" of Limulus polyphemus (Chelicerata: Xiphosura): morphological evidence for a correspondence between the segments of the chelicerae and of the (first) antennae of Mandibulata - PubMed (original) (raw)
Comparative Study
doi: 10.1007/s00427-002-0285-5. Epub 2002 Nov 30.
Affiliations
- PMID: 12590348
- DOI: 10.1007/s00427-002-0285-5
Comparative Study
Development of the nervous system in the "head" of Limulus polyphemus (Chelicerata: Xiphosura): morphological evidence for a correspondence between the segments of the chelicerae and of the (first) antennae of Mandibulata
Beate Mittmann et al. Dev Genes Evol. 2003 Feb.
Abstract
We investigated brain development in the horseshoe crab Limulus polyphemus and several other arthropods via immunocytochemical methods, i.e. antibody stainings against acetylated alpha-tubulin and synapsin. According to the traditional view, the first appendage-bearing segment in chelicerates (the chelicerae) is not homologous to the first appendage-bearing segment of mandibulates (first antenna, deutocerebrum) but to the segment of the second antenna (tritocerebrum) or the intercalary segment in hexapods and myriapods. Accordingly, the segment of the deutocerebrum in chelicerates would be completely reduced. The main arguments for this view are: (1) the postoral origin of the cheliceral ganglion, (2) a poststomodaeal commissure, and (3) a connection of the cheliceral ganglion to the stomatogastric system. Our data show that these arguments are not convincing. During the development of horseshoe crabs there is no evidence for a former additional segment in front of the chelicerae. Instead, comparison of the brain structure (neuropil ring) between chelicerates, crustaceans and insects shows remarkable similarities. Furthermore, the cheliceral commissure in horseshoe crabs runs mainly praestomodaeal, which would be unique for a tritocerebral commissure. An unbiased view of the developing nervous system in the "head" of chelicerates, crustaceans and insects leads to a homologisation of the cheliceral segment and that of the (first) antenna (= deutocerebrum) of mandibulates that is also congruous to the interpretation of the Hox gene expression patterns. Thus, our data provide morphological evidence for the existence of a chelicerate deutocerebrum.
Similar articles
- Implications of a cheliceral axial duplication in Tetragnatha versicolor (Araneae: Tetragnathidae) for arachnid deuterocerebral appendage development.
Cotoras DD, Castanheira PS, Sharma PP. Cotoras DD, et al. Dev Genes Evol. 2021 Dec;231(5-6):131-139. doi: 10.1007/s00427-021-00678-9. Epub 2021 Jun 14. Dev Genes Evol. 2021. PMID: 34125284 Review. - A conserved genetic mechanism specifies deutocerebral appendage identity in insects and arachnids.
Sharma PP, Tarazona OA, Lopez DH, Schwager EE, Cohn MJ, Wheeler WC, Extavour CG. Sharma PP, et al. Proc Biol Sci. 2015 Jun 7;282(1808):20150698. doi: 10.1098/rspb.2015.0698. Proc Biol Sci. 2015. PMID: 25948691 Free PMC article. - Conservation and variation in Ubx expression among chelicerates.
Popadić A, Nagy L. Popadić A, et al. Evol Dev. 2001 Nov-Dec;3(6):391-6. doi: 10.1046/j.1525-142x.2001.01049.x. Evol Dev. 2001. PMID: 11806634 - Opsin Repertoire and Expression Patterns in Horseshoe Crabs: Evidence from the Genome of Limulus polyphemus (Arthropoda: Chelicerata).
Battelle BA, Ryan JF, Kempler KE, Saraf SR, Marten CE, Warren WC, Minx PJ, Montague MJ, Green PJ, Schmidt SA, Fulton L, Patel NH, Protas ME, Wilson RK, Porter ML. Battelle BA, et al. Genome Biol Evol. 2016 Jun 3;8(5):1571-89. doi: 10.1093/gbe/evw100. Genome Biol Evol. 2016. PMID: 27189985 Free PMC article. - Opsins and Their Expression Patterns in the Xiphosuran Limulus polyphemus.
Battelle BA. Battelle BA. Biol Bull. 2017 Aug;233(1):3-20. doi: 10.1086/693730. Epub 2017 Oct 31. Biol Bull. 2017. PMID: 29182506 Review.
Cited by
- Serial Homology and Segment Identity in the Arthropod Head.
Lev O, Edgecombe GD, Chipman AD. Lev O, et al. Integr Org Biol. 2022 Apr 21;4(1):obac015. doi: 10.1093/iob/obac015. eCollection 2022. Integr Org Biol. 2022. PMID: 35620450 Free PMC article. - Neuroanatomy in a middle Cambrian mollisoniid and the ancestral nervous system organization of chelicerates.
Ortega-Hernández J, Lerosey-Aubril R, Losso SR, Weaver JC. Ortega-Hernández J, et al. Nat Commun. 2022 Jan 20;13(1):410. doi: 10.1038/s41467-022-28054-9. Nat Commun. 2022. PMID: 35058474 Free PMC article. - Implications of a cheliceral axial duplication in Tetragnatha versicolor (Araneae: Tetragnathidae) for arachnid deuterocerebral appendage development.
Cotoras DD, Castanheira PS, Sharma PP. Cotoras DD, et al. Dev Genes Evol. 2021 Dec;231(5-6):131-139. doi: 10.1007/s00427-021-00678-9. Epub 2021 Jun 14. Dev Genes Evol. 2021. PMID: 34125284 Review. - Correction to 'A possible case of inverted lifestyle in a new bivalved arthropod from the Burgess Shale'.
Izquierdo-López A, Caron JB. Izquierdo-López A, et al. R Soc Open Sci. 2020 Jan 8;7(1):192111. doi: 10.1098/rsos.192111. eCollection 2020 Jan. R Soc Open Sci. 2020. PMID: 32218985 Free PMC article. - Fossils from South China redefine the ancestral euarthropod body plan.
Aria C, Zhao F, Zeng H, Guo J, Zhu M. Aria C, et al. BMC Evol Biol. 2020 Jan 8;20(1):4. doi: 10.1186/s12862-019-1560-7. BMC Evol Biol. 2020. PMID: 31914921 Free PMC article.
References
- Nature. 2001 Sep 13;413(6852):157-61 - PubMed
- Int J Dev Biol. 1998 Sep;42(6):801-10 - PubMed
- Nature. 2002 May 16;417(6886):271-5 - PubMed
- Arthropod Struct Dev. 2000 Jul;29(3):267-74 - PubMed
- Nature. 2001 Sep 13;413(6852):154-7 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources