Statistical tests for identifying differentially expressed genes in time-course microarray experiments - PubMed (original) (raw)
Comparative Study
. 2003 Apr 12;19(6):694-703.
doi: 10.1093/bioinformatics/btg068.
Affiliations
- PMID: 12691981
- DOI: 10.1093/bioinformatics/btg068
Comparative Study
Statistical tests for identifying differentially expressed genes in time-course microarray experiments
Taesung Park et al. Bioinformatics. 2003.
Abstract
Motivation: Microarray technology allows the monitoring of expression levels for thousands of genes simultaneously. In time-course experiments in which gene expression is monitored over time, we are interested in testing gene expression profiles for different experimental groups. However, no sophisticated analytic methods have yet been proposed to handle time-course experiment data.
Results: We propose a statistical test procedure based on the ANOVA model to identify genes that have different gene expression profiles among experimental groups in time-course experiments. Especially, we propose a permutation test which does not require the normality assumption. For this test, we use residuals from the ANOVA model only with time-effects. Using this test, we detect genes that have different gene expression profiles among experimental groups. The proposed model is illustrated using cDNA microarrays of 3840 genes obtained in an experiment to search for changes in gene expression profiles during neuronal differentiation of cortical stem cells.
Similar articles
- Combining multiple microarrays in the presence of controlling variables.
Park T, Yi SG, Shin YK, Lee S. Park T, et al. Bioinformatics. 2006 Jul 15;22(14):1682-9. doi: 10.1093/bioinformatics/btl183. Epub 2006 May 16. Bioinformatics. 2006. PMID: 16705015 - Computational selection of distinct class- and subclass-specific gene expression signatures.
Bushel PR, Hamadeh HK, Bennett L, Green J, Ableson A, Misener S, Afshari CA, Paules RS. Bushel PR, et al. J Biomed Inform. 2002 Jun;35(3):160-70. doi: 10.1016/s1532-0464(02)00525-7. J Biomed Inform. 2002. PMID: 12669979 - Statistical significance analysis of longitudinal gene expression data.
Guo X, Qi H, Verfaillie CM, Pan W. Guo X, et al. Bioinformatics. 2003 Sep 1;19(13):1628-35. doi: 10.1093/bioinformatics/btg206. Bioinformatics. 2003. PMID: 12967958 - Rank-based clustering analysis for the time-course microarray data.
Yi SG, Joo YJ, Park T. Yi SG, et al. J Bioinform Comput Biol. 2009 Feb;7(1):75-91. doi: 10.1142/s0219720009004035. J Bioinform Comput Biol. 2009. PMID: 19226661 - Using ANOVA to analyze microarray data.
Churchill GA. Churchill GA. Biotechniques. 2004 Aug;37(2):173-5, 177. doi: 10.2144/04372TE01. Biotechniques. 2004. PMID: 15335204 Review.
Cited by
- timeClip: pathway analysis for time course data without replicates.
Martini P, Sales G, Calura E, Cagnin S, Chiogna M, Romualdi C. Martini P, et al. BMC Bioinformatics. 2014;15 Suppl 5(Suppl 5):S3. doi: 10.1186/1471-2105-15-S5-S3. Epub 2014 May 6. BMC Bioinformatics. 2014. PMID: 25077979 Free PMC article. - Functional clustering of periodic transcriptional profiles through ARMA(p,q).
Li N, McMurry T, Berg A, Wang Z, Berceli SA, Wu R. Li N, et al. PLoS One. 2010 Apr 16;5(4):e9894. doi: 10.1371/journal.pone.0009894. PLoS One. 2010. PMID: 20419127 Free PMC article. - Robust test method for time-course microarray experiments.
Sohn I, Owzar K, George SL, Kim S, Jung SH. Sohn I, et al. BMC Bioinformatics. 2010 Jul 22;11:391. doi: 10.1186/1471-2105-11-391. BMC Bioinformatics. 2010. PMID: 20649954 Free PMC article. - Principal components analysis based methodology to identify differentially expressed genes in time-course microarray data.
Jonnalagadda S, Srinivasan R. Jonnalagadda S, et al. BMC Bioinformatics. 2008 Jun 6;9:267. doi: 10.1186/1471-2105-9-267. BMC Bioinformatics. 2008. PMID: 18534040 Free PMC article. - Clustering of time-course gene expression profiles using normal mixture models with autoregressive random effects.
Wang K, Ng SK, McLachlan GJ. Wang K, et al. BMC Bioinformatics. 2012 Nov 14;13:300. doi: 10.1186/1471-2105-13-300. BMC Bioinformatics. 2012. PMID: 23151154 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources