Space weathering on airless planetary bodies: clues from the lunar mineral hapkeite - PubMed (original) (raw)
Space weathering on airless planetary bodies: clues from the lunar mineral hapkeite
Mahesh Anand et al. Proc Natl Acad Sci U S A. 2004.
Abstract
Physical and chemical reactions occurring as a result of the high-velocity impacts of meteorites and micrometeorites and of cosmic rays and solar-wind particles are major causes of space weathering on airless planetary bodies, such as the Moon, Mercury, and asteroids. These weathering processes are responsible for the formation of their regolith and soil. We report here the natural occurrence of the mineral hapkeite, a Fe2Si phase, and other associated Fe-Si phases (iron-silicides) in a regolith breccia clast of a lunar highland meteorite. These Fe-Si phases are considered to be a direct product of impact-induced, vapor-phase deposition in the lunar soil, all part of space weathering. We have used an in situ synchrotron energy-dispersive, single-crystal x-ray diffraction technique to confirm the crystal structure of hapkeite as similar to the structure of synthetic Fe2Si. This mineral, hapkeite, is named after Bruce Hapke of the University of Pittsburgh, who predicted the presence and importance of vapor-deposited coatings on lunar soil grains some 30 years ago. We propose that this mineral and other Fe-Si phases are probably more common in the lunar regolith than previously thought and are directly related to the formation of vapor-deposited, nanophase elemental iron in the lunar soils.
Figures
Fig. 1.
Reflected-light image of an area in the regolith clast in Dhofar 280, showing distribution of FeNi metal and Fe-Si metal grains in a feldspathic matrix, Msk, Maskelynite.
Fig. 2.
Backscatter electron (BSE) and x-ray elemental maps of hapkeite. Intergrowths of FeSi phase are seen in the lower part of hapkeite.
Fig. 3.
Cartoon illustrating the formation of iron-silicides on the Moon.
Similar articles
- Space Weathering on Airless Bodies.
Pieters CM, Noble SK. Pieters CM, et al. J Geophys Res Planets. 2016 Oct;121(10):1865-1884. doi: 10.1002/2016JE005128. Epub 2016 Sep 9. J Geophys Res Planets. 2016. PMID: 29862145 Free PMC article. - Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering.
Sasaki S, Nakamura K, Hamabe Y, Kurahashi E, Hiroi T. Sasaki S, et al. Nature. 2001 Mar 29;410(6828):555-7. doi: 10.1038/35069013. Nature. 2001. PMID: 11279486 - Surface microstructures of lunar soil returned by Chang'e-5 mission reveal an intermediate stage in space weathering process.
Guo JG, Ying T, Gao H, Chen X, Song Y, Lin T, Zhang Q, Zheng Q, Li C, Xu Y, Chen X. Guo JG, et al. Sci Bull (Beijing). 2022 Aug 31;67(16):1696-1701. doi: 10.1016/j.scib.2022.06.019. Epub 2022 Jun 24. Sci Bull (Beijing). 2022. PMID: 36546049 - High-energy particle observations from the Moon.
Dandouras I, Roussos E. Dandouras I, et al. Philos Trans A Math Phys Eng Sci. 2024 May 9;382(2271):20230311. doi: 10.1098/rsta.2023.0311. Epub 2024 Mar 25. Philos Trans A Math Phys Eng Sci. 2024. PMID: 38522469 Free PMC article. Review. - Lunar lava tube radiation safety analysis.
De Angelis G, Wilson JW, Clowdsley MS, Nealy JE, Humes DH, Clem JM. De Angelis G, et al. J Radiat Res. 2002 Dec;43 Suppl:S41-5. doi: 10.1269/jrr.43.s41. J Radiat Res. 2002. PMID: 12793728 Review.
Cited by
- Sub-microscopic magnetite and metallic iron particles formed by eutectic reaction in Chang'E-5 lunar soil.
Guo Z, Li C, Li Y, Wen Y, Wu Y, Jia B, Tai K, Zeng X, Li X, Liu J, Ouyang Z. Guo Z, et al. Nat Commun. 2022 Nov 23;13(1):7177. doi: 10.1038/s41467-022-35009-7. Nat Commun. 2022. PMID: 36418346 Free PMC article. - Application of FIB-SEM Techniques for the Advanced Characterization of Earth and Planetary Materials.
Gu L, Wang N, Tang X, Changela HG. Gu L, et al. Scanning. 2020 Jul 25;2020:8406917. doi: 10.1155/2020/8406917. eCollection 2020. Scanning. 2020. PMID: 32774588 Free PMC article. Review. - Effects of Lightning on the Magnetic Properties of Volcanic Ash.
Genareau K, Hong YK, Lee W, Choi M, Rostaghi-Chalaki M, Gharghabi P, Gafford J, Klüss J. Genareau K, et al. Sci Rep. 2019 Mar 18;9(1):4726. doi: 10.1038/s41598-019-41265-3. Sci Rep. 2019. PMID: 30886229 Free PMC article.
References
- Taylor, L. A. & Cirlin, E.-H. (1985) in ESR Dating and Dosimetry, eds. Ikeya, M. & Miki, T. (Ionics, Tokyo), pp. 19-39.
- Morris, R. V. (1980) Proceedings of the 11th Lunar Planetary Science Conference (Pergamon, New York), pp. 1697-1712.
- Zhu, X. K., Guo, Y., O'Nions, R. K., Young, E. D. & Ash, R. D. (2001) Nature 412, 311-313. - PubMed
- Wiesli, R. A., Beard, B. L., Taylor, L. A. & Johnson, C. M. (2003) Earth Planet. Sci. Lett. 216, 457-465.
- Keller, L. P. & McKay, D. S. (1997) Geochim. Cosmochim. Acta 61, 2331-2341.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical