Effect of AT877 on cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Results of a prospective placebo-controlled double-blind trial - PubMed (original) (raw)

Clinical Trial

Effect of AT877 on cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Results of a prospective placebo-controlled double-blind trial

M Shibuya et al. J Neurosurg. 1992 Apr.

Abstract

With the cooperation of 60 neurosurgical centers in Japan, a prospective randomized placebo-controlled double-blind trial of a new calcium antagonist AT877 (hexahydro-1-(5-isoquinolinesulfonyl)-1H-1,4-diazepine hydrochloride, or fasudil hydrochloride) was undertaken to determine the drug's effect on delayed cerebral vasospasm in patients with a ruptured cerebral aneurysm. A total of 276 patients, who underwent surgery within 3 days after subarachnoid hemorrhage (SAH) of Hunt and Hess Grades I to IV, were entered into the study. Nine patients were excluded because of protocol violation. The remaining 267 patients received either 30 mg AT877 or a placebo (saline) by intravenous injection over 30 minutes, three times a day for 14 days following surgery. Demographic and clinical data were well matched between the two groups. It was found that AT877 reduced angiographically demonstrable vasospasm by 38% (from 61% in the placebo group to 38% in the AT877 group, p = 0.0023), low-density regions on computerized tomography associated with vasospasm by 58% (from 38% to 16%, p = 0.0013), and symptomatic vasospasm by 30% (from 50% to 35%, p = 0.0247). Furthermore, AT877 reduced the number of patients with a poor clinical outcome associated with vasospasm (moderate disability or worse on the Glasgow Outcome Scale at 1 month after SAH) by 54% (from 26% to 12%, p = 0.0152). There were no serious adverse events reported in the AT877 group. This is the first report of a placebo-controlled double-blind trial that has demonstrated a significant reduction in angiographically revealed vasospasm by intravenous drug therapy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources