CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies - PubMed (original) (raw)
. 2005 Mar;151(Pt 3):653-663.
doi: 10.1099/mic.0.27437-0.
Affiliations
- PMID: 15758212
- DOI: 10.1099/mic.0.27437-0
Free article
CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies
C Pourcel et al. Microbiology (Reading). 2005 Mar.
Free article
Abstract
The remarkable repetitive elements called CRISPRs (clustered regularly interspaced short palindromic repeats) consist of repeats interspaced with non-repetitive elements or 'spacers'. CRISPRs are present in both archaea and bacteria, in association with genes involved in DNA recombination and repair. In the Yersinia pestis genome, three such elements are found at three distinct loci, one of them being highly polymorphic. The authors have sequenced a total of 109 alleles of the three Y. pestis CRISPRs and they describe 29 new spacers, most being specific to one isolate. In nine strains of Yersinia pseudotuberculosis, 132 spacers were found, of which only three are common to Y. pestis isolates. In Y. pestis of the Orientalis biovar investigated in detail here, deletion of motifs is observed but it appears that addition of new motifs to a common ancestral element is the most frequent event. This takes place at the three different loci, although at a higher rate in one of the loci, and the addition of new motifs is polarized. Interestingly, the most recently acquired spacers were found to have a homologue at another locus in the genome, the majority of these inside an inactive prophage. This is believed to be the first time that the origin of the spacers in CRISPR elements has been explained. The CRISPR structure provides a new and robust identification tool.
Similar articles
- Analysis of the three Yersinia pestis CRISPR loci provides new tools for phylogenetic studies and possibly for the investigation of ancient DNA.
Vergnaud G, Li Y, Gorgé O, Cui Y, Song Y, Zhou D, Grissa I, Dentovskaya SV, Platonov ME, Rakin A, Balakhonov SV, Neubauer H, Pourcel C, Anisimov AP, Yang R. Vergnaud G, et al. Adv Exp Med Biol. 2007;603:327-38. doi: 10.1007/978-0-387-72124-8_30. Adv Exp Med Biol. 2007. PMID: 17966429 - Dynamics of CRISPR loci in microevolutionary process of Yersinia pestis strains.
Barros MP, França CT, Lins RH, Santos MD, Silva EJ, Oliveira MB, Silveira-Filho VM, Rezende AM, Balbino VQ, Leal-Balbino TC. Barros MP, et al. PLoS One. 2014 Sep 29;9(9):e108353. doi: 10.1371/journal.pone.0108353. eCollection 2014. PLoS One. 2014. PMID: 25265542 Free PMC article. - Generation of a CRISPR database for Yersinia pseudotuberculosis complex and role of CRISPR-based immunity in conjugation.
Koskela KA, Mattinen L, Kalin-Mänttäri L, Vergnaud G, Gorgé O, Nikkari S, Skurnik M. Koskela KA, et al. Environ Microbiol. 2015 Nov;17(11):4306-21. doi: 10.1111/1462-2920.12816. Epub 2015 Mar 27. Environ Microbiol. 2015. PMID: 25712141 - Bacteriophages of Yersinia pestis.
Zhao X, Skurnik M. Zhao X, et al. Adv Exp Med Biol. 2016;918:361-375. doi: 10.1007/978-94-024-0890-4_13. Adv Exp Med Biol. 2016. PMID: 27722870 Review. - Genomic impact of CRISPR immunization against bacteriophages.
Barrangou R, Coûté-Monvoisin AC, Stahl B, Chavichvily I, Damange F, Romero DA, Boyaval P, Fremaux C, Horvath P. Barrangou R, et al. Biochem Soc Trans. 2013 Dec;41(6):1383-91. doi: 10.1042/BST20130160. Biochem Soc Trans. 2013. PMID: 24256225 Review.
Cited by
- Engineered materials for in vivo delivery of genome-editing machinery.
Tong S, Moyo B, Lee CM, Leong K, Bao G. Tong S, et al. Nat Rev Mater. 2019 Nov;4:726-737. doi: 10.1038/s41578-019-0145-9. Epub 2019 Oct 4. Nat Rev Mater. 2019. PMID: 34094589 Free PMC article. - Yersinia pestis lineages in Mongolia.
Riehm JM, Vergnaud G, Kiefer D, Damdindorj T, Dashdavaa O, Khurelsukh T, Zöller L, Wölfel R, Le Flèche P, Scholz HC. Riehm JM, et al. PLoS One. 2012;7(2):e30624. doi: 10.1371/journal.pone.0030624. Epub 2012 Feb 17. PLoS One. 2012. PMID: 22363455 Free PMC article. - Harnessing the evolving CRISPR/Cas9 for precision oncology.
Li T, Li S, Kang Y, Zhou J, Yi M. Li T, et al. J Transl Med. 2024 Aug 8;22(1):749. doi: 10.1186/s12967-024-05570-4. J Transl Med. 2024. PMID: 39118151 Free PMC article. Review. - Improving Horticultural Crops via CRISPR/Cas9: Current Successes and Prospects.
Bhatta BP, Malla S. Bhatta BP, et al. Plants (Basel). 2020 Oct 14;9(10):1360. doi: 10.3390/plants9101360. Plants (Basel). 2020. PMID: 33066510 Free PMC article. Review. - CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli.
Díez-Villaseñor C, Guzmán NM, Almendros C, García-Martínez J, Mojica FJ. Díez-Villaseñor C, et al. RNA Biol. 2013 May;10(5):792-802. doi: 10.4161/rna.24023. Epub 2013 Feb 27. RNA Biol. 2013. PMID: 23445770 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources