GlobalANCOVA: exploration and assessment of gene group effects - PubMed (original) (raw)
GlobalANCOVA: exploration and assessment of gene group effects
Manuela Hummel et al. Bioinformatics. 2008.
Abstract
Motivation: Several authors have studied expression in gene sets with specific goals: overrepresentation of interesting genes in functional groups, predictive power for class membership and searches for groups where the constituent genes show coordinated changes in expression under the experimental conditions. The purpose of this article is to follow the third direction. One important aspect is that the gene sets under analysis are known a priori and are not determined from the experimental data at hand. Our goal is to provide a methodology that helps to identify the relevant structural constituents (phenotypical, experimental design, biological component) that determine gene expression in a group.
Results: Gene-wise linear models are used to formalize the structural aspects of a study. The full model is contrasted with a reduced model that lacks the relevant design component. A comparison with respect to goodness of fit is made and quantified. An asymptotic test and a permutation test are derived to test the null hypothesis that the reduced model sufficiently explains the observed expression within the gene group of interest. Graphical tools are available to illustrate and interpret the results of the analysis. Examples demonstrate the wide range of application.
Availability: The R-package GlobalAncova (http://www.bioconductor.org) offers data and functions as well as a vignette to guide the user through specific analysis steps.
Similar articles
- MMG: a probabilistic tool to identify submodules of metabolic pathways.
Sanguinetti G, Noirel J, Wright PC. Sanguinetti G, et al. Bioinformatics. 2008 Apr 15;24(8):1078-84. doi: 10.1093/bioinformatics/btn066. Epub 2008 Feb 21. Bioinformatics. 2008. PMID: 18292114 - Significance analysis of groups of genes in expression profiling studies.
Chen JJ, Lee T, Delongchamp RR, Chen T, Tsai CA. Chen JJ, et al. Bioinformatics. 2007 Aug 15;23(16):2104-12. doi: 10.1093/bioinformatics/btm310. Epub 2007 Jun 6. Bioinformatics. 2007. PMID: 17553853 - GenePro: a Cytoscape plug-in for advanced visualization and analysis of interaction networks.
Vlasblom J, Wu S, Pu S, Superina M, Liu G, Orsi C, Wodak SJ. Vlasblom J, et al. Bioinformatics. 2006 Sep 1;22(17):2178-9. doi: 10.1093/bioinformatics/btl356. Bioinformatics. 2006. PMID: 16921162 - Modelling metapopulations with stochastic membrane systems.
Besozzi D, Cazzaniga P, Pescini D, Mauri G. Besozzi D, et al. Biosystems. 2008 Mar;91(3):499-514. doi: 10.1016/j.biosystems.2006.12.011. Epub 2007 Aug 11. Biosystems. 2008. PMID: 17904729 Review. - Tools for visually exploring biological networks.
Suderman M, Hallett M. Suderman M, et al. Bioinformatics. 2007 Oct 15;23(20):2651-9. doi: 10.1093/bioinformatics/btm401. Epub 2007 Aug 25. Bioinformatics. 2007. PMID: 17720984 Review.
Cited by
- Using a multiomics approach to unravel a septic shock specific signature in skeletal muscle.
Duceau B, Blatzer M, Bardon J, Chaze T, Giai Gianetto Q, Castelli F, Fenaille F, Duarte L, Lescot T, Tresallet C, Riou B, Matondo M, Langeron O, Rocheteau P, Chrétien F, Bouglé A. Duceau B, et al. Sci Rep. 2022 Nov 5;12(1):18776. doi: 10.1038/s41598-022-23544-8. Sci Rep. 2022. PMID: 36335235 Free PMC article. - Monte Carlo simulation of OLS and linear mixed model inference of phenotypic effects on gene expression.
Walker JA. Walker JA. PeerJ. 2016 Oct 11;4:e2575. doi: 10.7717/peerj.2575. eCollection 2016. PeerJ. 2016. PMID: 27761350 Free PMC article. - Assessing statistical significance in microarray experiments using the distance between microarrays.
Hayden D, Lazar P, Schoenfeld D; Inflammation and the Host Response to Injury Investigators. Hayden D, et al. PLoS One. 2009 Jun 16;4(6):e5838. doi: 10.1371/journal.pone.0005838. PLoS One. 2009. PMID: 19529777 Free PMC article. - Multiple platform assessment of the EGF dependent transcriptome by microarray and deep tag sequencing analysis.
Llorens F, Hummel M, Pastor X, Ferrer A, Pluvinet R, Vivancos A, Castillo E, Iraola S, Mosquera AM, González E, Lozano J, Ingham M, Dohm JC, Noguera M, Kofler R, del Río JA, Bayés M, Himmelbauer H, Sumoy L. Llorens F, et al. BMC Genomics. 2011 Jun 23;12:326. doi: 10.1186/1471-2164-12-326. BMC Genomics. 2011. PMID: 21699700 Free PMC article. - A shortcut for multiple testing on the directed acyclic graph of gene ontology.
Saunders G, Stevens JR, Isom SC. Saunders G, et al. BMC Bioinformatics. 2014 Nov 1;15(1):349. doi: 10.1186/s12859-014-0349-3. BMC Bioinformatics. 2014. PMID: 25366961 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases