Role of intermolecular forces in defining material properties of protein nanofibrils - PubMed (original) (raw)
. 2007 Dec 21;318(5858):1900-3.
doi: 10.1126/science.1150057.
Affiliations
- PMID: 18096801
- DOI: 10.1126/science.1150057
Role of intermolecular forces in defining material properties of protein nanofibrils
Tuomas P Knowles et al. Science. 2007.
Abstract
Protein molecules have the ability to form a rich variety of natural and artificial structures and materials. We show that amyloid fibrils, ordered supramolecular nanostructures that are self-assembled from a wide range of polypeptide molecules, have rigidities varying over four orders of magnitude, and constitute a class of high-performance biomaterials. We elucidate the molecular origin of fibril material properties and show that the major contribution to their rigidity stems from a generic interbackbone hydrogen-bonding network that is modulated by variable side-chain interactions.
Similar articles
- Molecular structure of amyloid fibrils: insights from solid-state NMR.
Tycko R. Tycko R. Q Rev Biophys. 2006 Feb;39(1):1-55. doi: 10.1017/S0033583506004173. Epub 2006 Jun 13. Q Rev Biophys. 2006. PMID: 16772049 Review. - An analytical solution to the kinetics of breakable filament assembly.
Knowles TP, Waudby CA, Devlin GL, Cohen SI, Aguzzi A, Vendruscolo M, Terentjev EM, Welland ME, Dobson CM. Knowles TP, et al. Science. 2009 Dec 11;326(5959):1533-7. doi: 10.1126/science.1178250. Science. 2009. PMID: 20007899 - Self-folding and aggregation of amyloid nanofibrils.
Paparcone R, Cranford SW, Buehler MJ. Paparcone R, et al. Nanoscale. 2011 Apr;3(4):1748-55. doi: 10.1039/c0nr00840k. Epub 2011 Feb 23. Nanoscale. 2011. PMID: 21347488 - Ultrastructural organization of amyloid fibrils by atomic force microscopy.
Chamberlain AK, MacPhee CE, Zurdo J, Morozova-Roche LA, Hill HA, Dobson CM, Davis JJ. Chamberlain AK, et al. Biophys J. 2000 Dec;79(6):3282-93. doi: 10.1016/S0006-3495(00)76560-X. Biophys J. 2000. PMID: 11106631 Free PMC article. - Formation of Nanostructures by Peptides.
Pachahara SK, Subbalakshmi C, Nagaraj R. Pachahara SK, et al. Curr Protein Pept Sci. 2017;18(9):920-938. doi: 10.2174/1389203717666160724210122. Curr Protein Pept Sci. 2017. PMID: 27455966 Review.
Cited by
- Proteomic Evidence for Amyloidogenic Cross-Seeding in Fibrinaloid Microclots.
Kell DB, Pretorius E. Kell DB, et al. Int J Mol Sci. 2024 Oct 8;25(19):10809. doi: 10.3390/ijms251910809. Int J Mol Sci. 2024. PMID: 39409138 Free PMC article. - Strategies for Making High-Performance Artificial Spider Silk Fibers.
Schmuck B, Greco G, Pessatti TB, Sonavane S, Langwallner V, Arndt T, Rising A. Schmuck B, et al. Adv Funct Mater. 2024 Aug 28;34(35):2305040. doi: 10.1002/adfm.202305040. Epub 2023 Oct 10. Adv Funct Mater. 2024. PMID: 39355086 Free PMC article. Review. - EMMAs: Implementation and Assessment of a Suite of Cross-Disciplinary, Case-Based High School Activities to Explore Three-Dimensional Molecular Structure, Noncovalent Interactions, and Molecular Dynamics.
Kotsalidis PE, Kranc SN, Berryman M, Radhakrishnan ML, Elmore DE. Kotsalidis PE, et al. J Chem Educ. 2024 May 10;101(6):2436-2447. doi: 10.1021/acs.jchemed.4c00036. eCollection 2024 Jun 11. J Chem Educ. 2024. PMID: 38884045 Free PMC article. - The thermodynamics of neurodegenerative disease.
Meisl G. Meisl G. Biophys Rev (Melville). 2024 Mar 20;5(1):011303. doi: 10.1063/5.0180899. eCollection 2024 Mar. Biophys Rev (Melville). 2024. PMID: 38525484 Review. - Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases.
Rinauro DJ, Chiti F, Vendruscolo M, Limbocker R. Rinauro DJ, et al. Mol Neurodegener. 2024 Feb 20;19(1):20. doi: 10.1186/s13024-023-00651-2. Mol Neurodegener. 2024. PMID: 38378578 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases