Zebrafish development and regeneration: new tools for biomedical research - PubMed (original) (raw)
Review
doi: 10.1387/ijdb.082615sb.
Suzanne J Duivesteijn, Mounia Belmamoune, Laura F M Bertens, Wilbert Bitter, Joost D de Bruijn, Danielle L Champagne, Edwin Cuppen, Gert Flik, Christina M Vandenbroucke-Grauls, Richard A J Janssen, Ilse M L de Jong, Edo Ronald de Kloet, Alexander Kros, Annemarie H Meijer, Juriaan R Metz, Astrid M van der Sar, Marcel J M Schaaf, Stefan Schulte-Merker, Herman P Spaink, Paul P Tak, Fons J Verbeek, Margriet J Vervoordeldonk, Freek J Vonk, Frans Witte, Huipin Yuan, Michael K Richardson
Affiliations
- PMID: 19557689
- DOI: 10.1387/ijdb.082615sb
Free article
Review
Zebrafish development and regeneration: new tools for biomedical research
Sebastiaan A Brittijn et al. Int J Dev Biol. 2009.
Free article
Abstract
Basic research in pattern formation is concerned with the generation of phenotypes and tissues. It can therefore lead to new tools for medical research. These include phenotypic screening assays, applications in tissue engineering, as well as general advances in biomedical knowledge. Our aim here is to discuss this emerging field with special reference to tools based on zebrafish developmental biology. We describe phenotypic screening assays being developed in our own and other labs. Our assays involve: (i) systemic or local administration of a test compound or drug to zebrafish in vivo; (ii) the subsequent detection or "readout" of a defined phenotypic change. A positive readout may result from binding of the test compound to a molecular target involved in a developmental pathway. We present preliminary data on assays for compounds that modulate skeletal patterning, bone turnover, immune responses, inflammation and early-life stress. The assays use live zebrafish embryos and larvae as well as adult fish undergoing caudal fin regeneration. We describe proof-of-concept studies on the localised targeting of compounds into regeneration blastemas using microcarriers. Zebrafish are cheaper to maintain than rodents, produce large numbers of transparent eggs, and some zebrafish assays could be scaled-up into medium and high throughput screens. However, advances in automation and imaging are required. Zebrafish cannot replace mammalian models in the drug development pipeline. Nevertheless, they can provide a cost-effective bridge between cell-based assays and mammalian whole-organism models.
Comment in
- Pattern formation today.
Chuong CM, Richardson MK. Chuong CM, et al. Int J Dev Biol. 2009;53(5-6):653-8. doi: 10.1387/ijdb.082594cc. Int J Dev Biol. 2009. PMID: 19557673 Free PMC article. Review.
Similar articles
- Technology for high-throughput screens: the present and future using zebrafish.
Love DR, Pichler FB, Dodd A, Copp BR, Greenwood DR. Love DR, et al. Curr Opin Biotechnol. 2004 Dec;15(6):564-71. doi: 10.1016/j.copbio.2004.09.004. Curr Opin Biotechnol. 2004. PMID: 15560983 Review. - Novel trends in high-throughput screening.
Mayr LM, Bojanic D. Mayr LM, et al. Curr Opin Pharmacol. 2009 Oct;9(5):580-8. doi: 10.1016/j.coph.2009.08.004. Epub 2009 Sep 21. Curr Opin Pharmacol. 2009. PMID: 19775937 Review. - In vivo drug discovery in the zebrafish.
Zon LI, Peterson RT. Zon LI, et al. Nat Rev Drug Discov. 2005 Jan;4(1):35-44. doi: 10.1038/nrd1606. Nat Rev Drug Discov. 2005. PMID: 15688071 Review. - Conserved mechanisms regulate outgrowth in zebrafish fins.
Iovine MK. Iovine MK. Nat Chem Biol. 2007 Oct;3(10):613-8. doi: 10.1038/nchembio.2007.36. Nat Chem Biol. 2007. PMID: 17876318 Review. - Small molecule screening in the zebrafish.
Murphey RD, Zon LI. Murphey RD, et al. Methods. 2006 Jul;39(3):255-61. doi: 10.1016/j.ymeth.2005.09.019. Methods. 2006. PMID: 16877005
Cited by
- Prednisolone induces osteoporosis-like phenotype in regenerating zebrafish scales.
de Vrieze E, van Kessel MA, Peters HM, Spanings FA, Flik G, Metz JR. de Vrieze E, et al. Osteoporos Int. 2014 Feb;25(2):567-78. doi: 10.1007/s00198-013-2441-3. Epub 2013 Aug 1. Osteoporos Int. 2014. PMID: 23903952 - Metabolic bone disorders and the promise of marine osteoactive compounds.
Carletti A, Gavaia PJ, Cancela ML, Laizé V. Carletti A, et al. Cell Mol Life Sci. 2023 Dec 20;81(1):11. doi: 10.1007/s00018-023-05033-x. Cell Mol Life Sci. 2023. PMID: 38117357 Free PMC article. Review. - Leveraging the zebrafish to model organ transplantation.
Cavalcante LDS, Toner M, Uygun K, Tessier SN. Cavalcante LDS, et al. Curr Opin Organ Transplant. 2019 Oct;24(5):613-619. doi: 10.1097/MOT.0000000000000696. Curr Opin Organ Transplant. 2019. PMID: 31483338 Free PMC article. Review. - Effect of lighting conditions on zebrafish growth and development.
Villamizar N, Vera LM, Foulkes NS, Sánchez-Vázquez FJ. Villamizar N, et al. Zebrafish. 2014 Apr;11(2):173-81. doi: 10.1089/zeb.2013.0926. Epub 2013 Dec 24. Zebrafish. 2014. PMID: 24367902 Free PMC article. - Light-triggered switching of liposome surface charge directs delivery of membrane impermeable payloads in vivo.
Arias-Alpizar G, Kong L, Vlieg RC, Rabe A, Papadopoulou P, Meijer MS, Bonnet S, Vogel S, van Noort J, Kros A, Campbell F. Arias-Alpizar G, et al. Nat Commun. 2020 Jul 20;11(1):3638. doi: 10.1038/s41467-020-17360-9. Nat Commun. 2020. PMID: 32686667 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources