Dopamine transporter genetic variants and pesticides in Parkinson's disease - PubMed (original) (raw)
Dopamine transporter genetic variants and pesticides in Parkinson's disease
Beate R Ritz et al. Environ Health Perspect. 2009 Jun.
Abstract
Background: Research suggests that independent and joint effects of genetic variability in the dopamine transporter (DAT) locus and pesticides may influence Parkinson's disease (PD) risk.
Methods: In 324 incident PD patients and 334 population controls from our rural California case-control study, we genotyped rs2652510, rs2550956 (for the DAT 5' clades), and the 3' variable number of tandem repeats (VNTR). Using geographic information system methods, we determined residential exposure to agricultural maneb and paraquat applications. We also collected occupational pesticide use data. Employing logistic regression, we calculated odds ratios (ORs) for clade diplotypes, VNTR genotype, and number of susceptibility (A clade and 9-repeat) alleles and assessed susceptibility allele-pesticide interactions.
Results: PD risk was increased separately in DAT A clade diplotype carriers [AA vs. BB: OR = 1.66; 95% confidence interval (CI), 1.08-2.57] and 3' VNTR 9/9 carriers (9/9 vs. 10/10: OR = 1.8; 95% CI, 0.96-3.57), and our data suggest a gene dosing effect. Importantly, high exposure to paraquat and maneb in carriers of one susceptibility allele increased PD risk 3-fold (OR = 2.99; 95% CI, 0.88-10.2), and in carriers of two or more alleles more than 4-fold (OR = 4.53; 95% CI, 1.70-12.1). We obtained similar results for occupational pesticide measures.
Discussion: Using two independent pesticide measures, we a) replicated previously reported gene-environment interactions between DAT genetic variants and occupational pesticide exposure in men and b) overcame previous limitations of nonspecific pesticide measures and potential recall bias by employing state records and computer models to estimate residential pesticide exposure.
Conclusion: Our results suggest that DAT genetic variability and pesticide exposure interact to increase PD risk.
Keywords: Parkinson’s disease; dopamine transporter; gene-environmental interactions; occupational and environmental exposures; pesticides.
Similar articles
- 5' and 3' region variability in the dopamine transporter gene (SLC6A3), pesticide exposure and Parkinson's disease risk: a hypothesis-generating study.
Kelada SN, Checkoway H, Kardia SL, Carlson CS, Costa-Mallen P, Eaton DL, Firestone J, Powers KM, Swanson PD, Franklin GM, Longstreth WT Jr, Weller TS, Afsharinejad Z, Costa LG. Kelada SN, et al. Hum Mol Genet. 2006 Oct 15;15(20):3055-62. doi: 10.1093/hmg/ddl247. Epub 2006 Sep 8. Hum Mol Genet. 2006. PMID: 16963468 - Parkinson's disease risk from ambient exposure to pesticides.
Wang A, Costello S, Cockburn M, Zhang X, Bronstein J, Ritz B. Wang A, et al. Eur J Epidemiol. 2011 Jul;26(7):547-55. doi: 10.1007/s10654-011-9574-5. Epub 2011 Apr 20. Eur J Epidemiol. 2011. PMID: 21505849 Free PMC article. - Genetic variability in ABCB1, occupational pesticide exposure, and Parkinson's disease.
Narayan S, Sinsheimer JS, Paul KC, Liew Z, Cockburn M, Bronstein JM, Ritz B. Narayan S, et al. Environ Res. 2015 Nov;143(Pt A):98-106. doi: 10.1016/j.envres.2015.08.022. Epub 2015 Oct 19. Environ Res. 2015. PMID: 26457621 Free PMC article. - Of Pesticides and Men: a California Story of Genes and Environment in Parkinson's Disease.
Ritz BR, Paul KC, Bronstein JM. Ritz BR, et al. Curr Environ Health Rep. 2016 Mar;3(1):40-52. doi: 10.1007/s40572-016-0083-2. Curr Environ Health Rep. 2016. PMID: 26857251 Free PMC article. Review. - Biochemical and toxicological evidence of neurological effects of pesticides: the example of Parkinson's disease.
Moretto A, Colosio C. Moretto A, et al. Neurotoxicology. 2011 Aug;32(4):383-91. doi: 10.1016/j.neuro.2011.03.004. Epub 2011 Mar 23. Neurotoxicology. 2011. PMID: 21402100 Review.
Cited by
- Selective dopaminergic neurotoxicity modulated by inherent cell-type specific neurobiology.
Currim F, Tanwar R, Brown-Leung JM, Paranjape N, Liu J, Sanders LH, Doorn JA, Cannon JR. Currim F, et al. Neurotoxicology. 2024 Jul;103:266-287. doi: 10.1016/j.neuro.2024.06.016. Epub 2024 Jul 2. Neurotoxicology. 2024. PMID: 38964509 Review. - Towards improved screening of toxins for Parkinson's risk.
Shan L, Heusinkveld HJ, Paul KC, Hughes S, Darweesh SKL, Bloem BR, Homberg JR. Shan L, et al. NPJ Parkinsons Dis. 2023 Dec 19;9(1):169. doi: 10.1038/s41531-023-00615-9. NPJ Parkinsons Dis. 2023. PMID: 38114496 Free PMC article. Review. - Inhibition of striatal dopamine release by the L-type calcium channel inhibitor isradipine co-varies with risk factors for Parkinson's.
Brimblecombe KR, Connor-Robson N, Bataille CJR, Roberts BM, Gracie C, O'Connor B, Te Water Naude R, Karthik G, Russell AJ, Wade-Martins R, Cragg SJ. Brimblecombe KR, et al. Eur J Neurosci. 2024 Mar;59(6):1242-1259. doi: 10.1111/ejn.16180. Epub 2023 Nov 8. Eur J Neurosci. 2024. PMID: 37941514 Free PMC article. - Mitochondria and Brain Disease: A Comprehensive Review of Pathological Mechanisms and Therapeutic Opportunities.
Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Ramos-Campo DJ, Belinchón-deMiguel P, Martinez-Guardado I, Dalamitros AA, Yáñez-Sepúlveda R, Martín-Rodríguez A, Tornero-Aguilera JF. Clemente-Suárez VJ, et al. Biomedicines. 2023 Sep 7;11(9):2488. doi: 10.3390/biomedicines11092488. Biomedicines. 2023. PMID: 37760929 Free PMC article. Review. - Therapeutic Effect of Human Adipocyte-derived Stem Cell-derived Exosomes on a Transgenic Mouse Model of Parkinson's Disease.
Chan L, Hsu W, Chen KY, Wang W, Hung YC, Hong CT. Chan L, et al. In Vivo. 2023 Sep-Oct;37(5):2028-2038. doi: 10.21873/invivo.13300. In Vivo. 2023. PMID: 37652511 Free PMC article.
References
- Bagade S, Allen NC, Tanzi R, Bertram L. The PDGene Database. Alzheimer Research Forum; 2008. [[accessed 20 June 2008]]. Available: http://www.pdgene.org/
- Chester G, Ward RJ. Occupational exposure and drift hazard during aerial application of paraquat to cotton. Arch Environ Contam Toxicol. 1984;13(5):551–563. - PubMed
- Currier WW, MacCollom GB, Baumann GL. Drift residues of air-applied carbaryl in an orchard environment. Entomology. 1982;75(6):1062–1068. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- ES10544/ES/NIEHS NIH HHS/United States
- P50 NS040256/NS/NINDS NIH HHS/United States
- R01 ES010544-04/ES/NIEHS NIH HHS/United States
- P01 ES016732-01S10004/ES/NIEHS NIH HHS/United States
- R01 ES010544/ES/NIEHS NIH HHS/United States
- P01 NS040256/NS/NINDS NIH HHS/United States
- 5P30-ES07048/ES/NIEHS NIH HHS/United States
- R01 ES010544-05/ES/NIEHS NIH HHS/United States
- P01 ES016732-020004/ES/NIEHS NIH HHS/United States
- P50 NS038367/NS/NINDS NIH HHS/United States
- P01 ES016732/ES/NIEHS NIH HHS/United States
- P30 ES007048/ES/NIEHS NIH HHS/United States
- R01 ES010544-02/ES/NIEHS NIH HHS/United States
- U54 ES012078/ES/NIEHS NIH HHS/United States
- U54-ES12078/ES/NIEHS NIH HHS/United States
- R01 ES010544-03/ES/NIEHS NIH HHS/United States
- R01 ES010544-01A1/ES/NIEHS NIH HHS/United States
- NS40256/NS/NINDS NIH HHS/United States
- P01 ES016732-010004/ES/NIEHS NIH HHS/United States
- NS-038367/NS/NINDS NIH HHS/United States
LinkOut - more resources
Full Text Sources
Medical