Nrf2 the rescue: effects of the antioxidative/electrophilic response on the liver - PubMed (original) (raw)
Review
Nrf2 the rescue: effects of the antioxidative/electrophilic response on the liver
Curtis D Klaassen et al. Toxicol Appl Pharmacol. 2010.
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that positively regulates the basal and inducible expression of a large battery of cytoprotective genes. These gene products include proteins that catalyze reduction reactions (NAD(P)H:quinone oxidoreductase 1, Nqo1), conjugation reactions (glutathione-S-transferases, Gsts and UDP-glucuronosyltransferases, Ugts), as well as the efflux of potentially toxic xenobiotics and xenobiotic conjugates (multidrug resistance-associated proteins, Mrps). The significance of Nrf2 in the liver has been established, as livers of Nrf2-null mice are more susceptible to various oxidative/electrophilic stress-induced pathologies than wild-type mice. In contrast, both pharmacological and genetic models of hepatic Nrf2 activation are protective against oxidative/electrophilic stress. Furthermore, because certain Nrf2-target genes in the liver could affect the distribution, metabolism, and excretion of xenobiotics, the effects of Nrf2 on the kinetics of drugs and other xenobiotics should also be considered, with a special emphasis on metabolism and excretion. Therefore, this review highlights the research that has contributed to the understanding of the importance of Nrf2 in toxicodynamics and toxicokinetics, especially that which pertains to the liver.
2010 Elsevier Inc. All rights reserved.
Similar articles
- Increased Nrf2 activation in livers from Keap1-knockdown mice increases expression of cytoprotective genes that detoxify electrophiles more than those that detoxify reactive oxygen species.
Reisman SA, Yeager RL, Yamamoto M, Klaassen CD. Reisman SA, et al. Toxicol Sci. 2009 Mar;108(1):35-47. doi: 10.1093/toxsci/kfn267. Epub 2009 Jan 6. Toxicol Sci. 2009. PMID: 19129213 Free PMC article. - Nuclear factor E2-related factor 2-dependent myocardiac cytoprotection against oxidative and electrophilic stress.
Zhu H, Jia Z, Misra BR, Zhang L, Cao Z, Yamamoto M, Trush MA, Misra HP, Li Y. Zhu H, et al. Cardiovasc Toxicol. 2008 Summer;8(2):71-85. doi: 10.1007/s12012-008-9016-0. Epub 2008 May 8. Cardiovasc Toxicol. 2008. PMID: 18463988 - Oxidative and electrophilic stress induces multidrug resistance-associated protein transporters via the nuclear factor-E2-related factor-2 transcriptional pathway.
Maher JM, Dieter MZ, Aleksunes LM, Slitt AL, Guo G, Tanaka Y, Scheffer GL, Chan JY, Manautou JE, Chen Y, Dalton TP, Yamamoto M, Klaassen CD. Maher JM, et al. Hepatology. 2007 Nov;46(5):1597-610. doi: 10.1002/hep.21831. Hepatology. 2007. PMID: 17668877 - Role of Nrf2 in chronic liver disease.
Tang W, Jiang YF, Ponnusamy M, Diallo M. Tang W, et al. World J Gastroenterol. 2014 Sep 28;20(36):13079-87. doi: 10.3748/wjg.v20.i36.13079. World J Gastroenterol. 2014. PMID: 25278702 Free PMC article. Review. - Naturally Occurring Nrf2 Activators: Potential in Treatment of Liver Injury.
Jadeja RN, Upadhyay KK, Devkar RV, Khurana S. Jadeja RN, et al. Oxid Med Cell Longev. 2016;2016:3453926. doi: 10.1155/2016/3453926. Epub 2016 Dec 22. Oxid Med Cell Longev. 2016. PMID: 28101296 Free PMC article. Review.
Cited by
- Current strategies to minimize hepatic ischemia-reperfusion injury by targeting reactive oxygen species.
Jaeschke H, Woolbright BL. Jaeschke H, et al. Transplant Rev (Orlando). 2012 Apr;26(2):103-14. doi: 10.1016/j.trre.2011.10.006. Transplant Rev (Orlando). 2012. PMID: 22459037 Free PMC article. Review. - Upregulation of Carbonyl Reductase 1 by Nrf2 as a Potential Therapeutic Intervention for Ischemia/ Reperfusion Injury during Liver Transplantation.
Kwon JH, Lee J, Kim J, Kirchner VA, Jo YH, Miura T, Kim N, Song GW, Hwang S, Lee SG, Yoon YI, Tak E. Kwon JH, et al. Mol Cells. 2019 Sep 30;42(9):672-685. doi: 10.14348/molcells.2019.0003. Mol Cells. 2019. PMID: 31486328 Free PMC article. - Energy determinants GAPDH and NDPK act as genetic modifiers for hepatocyte inclusion formation.
Snider NT, Weerasinghe SV, Singla A, Leonard JM, Hanada S, Andrews PC, Lok AS, Omary MB. Snider NT, et al. J Cell Biol. 2011 Oct 17;195(2):217-29. doi: 10.1083/jcb.201102142. J Cell Biol. 2011. PMID: 22006949 Free PMC article. - Deleterious effect of oltipraz on extrahepatic cholestasis in bile duct-ligated mice.
Weerachayaphorn J, Luo Y, Mennone A, Soroka CJ, Harry K, Boyer JL. Weerachayaphorn J, et al. J Hepatol. 2014 Jan;60(1):160-6. doi: 10.1016/j.jhep.2013.08.015. Epub 2013 Aug 23. J Hepatol. 2014. PMID: 23978715 Free PMC article. - Mitochondrial genome depletion dysregulates bile acid- and paracetamol-induced expression of the transporters Mdr1, Mrp1 and Mrp4 in liver cells.
Perez MJ, Gonzalez-Sanchez E, Gonzalez-Loyola A, Gonzalez-Buitrago JM, Marin JJ. Perez MJ, et al. Br J Pharmacol. 2011 Apr;162(8):1686-99. doi: 10.1111/j.1476-5381.2010.01174.x. Br J Pharmacol. 2011. PMID: 21175587 Free PMC article.
References
- Alam J, Stewart D, Touchard C, Boinapally S, Choi AM, Cook JL. Nrf2, a Cap‘n’Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem. 1999;274:26071–26078. - PubMed
- Alnouti Y, Klaassen CD. Regulation of sulfotransferase enzymes by prototypical microsomal enzyme inducers in mice. J Pharmacol Exp Ther. 2008;324:612–621. - PubMed
- Boberg EW, Miller EC, Miller JA, Poland A, Liem A. Strong evidence from studies with brachymorphic mice and pentachlorophenol that 1′-sulfooxysafrole is the major ultimate electrophilic and carcinogenic metabolite of 1′-hydroxysafrole in mouse liver. Cancer Res. 1983;43:5163–5173. - PubMed
- Buckley DB, Klaassen CD. Induction of mouse UDPglucuronosyltransferase mRNA expression in liver and intestine by activators of aryl-hydrocarbon receptor, constitutive androstane receptor, pregnane X receptor, peroxisome proliferator-activated receptor alpha, and nuclear factor erythroid 2-related factor 2. Drug Metab Dispos. 2009;37:847–856. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- R01 ES009716/ES/NIEHS NIH HHS/United States
- R01 ES013714/ES/NIEHS NIH HHS/United States
- R01 ES003192-30/ES/NIEHS NIH HHS/United States
- T32 ES007079/ES/NIEHS NIH HHS/United States
- R01 ES008156-07/ES/NIEHS NIH HHS/United States
- R01 ES001142-24/ES/NIEHS NIH HHS/United States
- R01 DK081461/DK/NIDDK NIH HHS/United States
- R01 ES008156-08/ES/NIEHS NIH HHS/United States
- R01 ES009649/ES/NIEHS NIH HHS/United States
- T32 ES007079-28/ES/NIEHS NIH HHS/United States
- T32 ES007079-29/ES/NIEHS NIH HHS/United States
- R01 ES013714-04/ES/NIEHS NIH HHS/United States
- R01 ES009716-08/ES/NIEHS NIH HHS/United States
- R01 ES009649-06/ES/NIEHS NIH HHS/United States
- P20 RR021940-04/RR/NCRR NIH HHS/United States
- R01 ES003192-29/ES/NIEHS NIH HHS/United States
- R01 ES009716-09/ES/NIEHS NIH HHS/United States
- R01 ES013714-05/ES/NIEHS NIH HHS/United States
- R01 ES003192/ES/NIEHS NIH HHS/United States
- R01 ES008156/ES/NIEHS NIH HHS/United States
- P20 RR021940/RR/NCRR NIH HHS/United States
- R01 ES001142-23/ES/NIEHS NIH HHS/United States
- DK081461/DK/NIDDK NIH HHS/United States
- P20 RR021940-03/RR/NCRR NIH HHS/United States
- R01 ES009649-07/ES/NIEHS NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous