Distinct genetic alterations in colorectal cancer - PubMed (original) (raw)
Distinct genetic alterations in colorectal cancer
Hassan Ashktorab et al. PLoS One. 2010.
Abstract
Background: Colon cancer (CRC) development often includes chromosomal instability (CIN) leading to amplifications and deletions of large DNA segments. Epidemiological, clinical, and cytogenetic studies showed that there are considerable differences between CRC tumors from African Americans (AAs) and Caucasian patients. In this study, we determined genomic copy number aberrations in sporadic CRC tumors from AAs, in order to investigate possible explanations for the observed disparities.
Methodology/principal findings: We applied genome-wide array comparative genome hybridization (aCGH) using a 105k chip to identify copy number aberrations in samples from 15 AAs. In addition, we did a population comparative analysis with aCGH data in Caucasians as well as with a widely publicized list of colon cancer genes (CAN genes). There was an average of 20 aberrations per patient with more amplifications than deletions. Analysis of DNA copy number of frequently altered chromosomes revealed that deletions occurred primarily in chromosomes 4, 8 and 18. Chromosomal duplications occurred in more than 50% of cases on chromosomes 7, 8, 13, 20 and X. The CIN profile showed some differences when compared to Caucasian alterations.
Conclusions/significance: Chromosome X amplification in male patients and chromosomes 4, 8 and 18 deletions were prominent aberrations in AAs. Some CAN genes were altered at high frequencies in AAs with EXOC4, EPHB6, GNAS, MLL3 and TBX22 as the most frequently deleted genes and HAPLN1, ADAM29, SMAD2 and SMAD4 as the most frequently amplified genes. The observed CIN may play a distinctive role in CRC in AAs.
Conflict of interest statement
Competing Interests: The authors have declared that no competing interests exist.
Similar articles
- Array CGH identifies distinct DNA copy number profiles of oncogenes and tumor suppressor genes in chromosomal- and microsatellite-unstable sporadic colorectal carcinomas.
Lassmann S, Weis R, Makowiec F, Roth J, Danciu M, Hopt U, Werner M. Lassmann S, et al. J Mol Med (Berl). 2007 Mar;85(3):293-304. doi: 10.1007/s00109-006-0126-5. Epub 2006 Dec 2. J Mol Med (Berl). 2007. PMID: 17143621 - Genomic aberrations in an African American colorectal cancer cohort reveals a MSI-specific profile and chromosome X amplification in male patients.
Brim H, Lee E, Abu-Asab MS, Chaouchi M, Razjouyan H, Namin H, Goel A, Schäffer AA, Ashktorab H. Brim H, et al. PLoS One. 2012;7(8):e40392. doi: 10.1371/journal.pone.0040392. Epub 2012 Aug 6. PLoS One. 2012. PMID: 22879877 Free PMC article. - An integrative CGH, MSI and candidate genes methylation analysis of colorectal tumors.
Brim H, Abu-Asab MS, Nouraie M, Salazar J, Deleo J, Razjouyan H, Mokarram P, Schaffer AA, Naghibhossaini F, Ashktorab H. Brim H, et al. PLoS One. 2014 Jan 27;9(1):e82185. doi: 10.1371/journal.pone.0082185. eCollection 2014. PLoS One. 2014. PMID: 24475022 Free PMC article. - Early genetic aberrations in patients with sporadic colorectal cancer.
Druliner BR, Ruan X, Sicotte H, O'Brien D, Liu H, Kocher JA, Boardman L. Druliner BR, et al. Mol Carcinog. 2018 Jan;57(1):114-124. doi: 10.1002/mc.22738. Epub 2017 Oct 18. Mol Carcinog. 2018. PMID: 28926134 Free PMC article. - [Colorectal oncogenesis].
Laurent-Puig P, Agostini J, Maley K. Laurent-Puig P, et al. Bull Cancer. 2010 Nov;97(11):1311-21. doi: 10.1684/bdc.2010.1216. Bull Cancer. 2010. PMID: 21115420 Review. French.
Cited by
- Underexpression of LATS1 TSG in colorectal cancer is associated with promoter hypermethylation.
Wierzbicki PM, Adrych K, Kartanowicz D, Stanislawowski M, Kowalczyk A, Godlewski J, Skwierz-Bogdanska I, Celinski K, Gach T, Kulig J, Korybalski B, Kmiec Z. Wierzbicki PM, et al. World J Gastroenterol. 2013 Jul 21;19(27):4363-73. doi: 10.3748/wjg.v19.i27.4363. World J Gastroenterol. 2013. PMID: 23885148 Free PMC article. - A Hyaluronan and Proteoglycan Link Protein 1 Matrikine: Role of Matrix Metalloproteinase 2 in Multiple Myeloma NF-κB Activation and Drug Resistance.
Mark C, Warrick J, Callander NS, Hematti P, Miyamoto S. Mark C, et al. Mol Cancer Res. 2022 Sep 2;20(9):1456-1466. doi: 10.1158/1541-7786.MCR-21-0941. Mol Cancer Res. 2022. PMID: 35604822 Free PMC article. - Decreased copy-neutral loss of heterozygosity in African American colorectal cancers.
Augustus GJ, Xicola RM, Llor X, Ellis NA. Augustus GJ, et al. Genes Chromosomes Cancer. 2020 Aug;59(8):454-464. doi: 10.1002/gcc.22851. Epub 2020 Apr 29. Genes Chromosomes Cancer. 2020. PMID: 32293075 Free PMC article. - A review on role of ATM gene in hereditary transfer of colorectal cancer.
Sriramulu S, Ramachandran M, Subramanian S, Kannan R, Gopinath M, Sollano J, Bissi L, Banerjee A, Marotta F, Pathak S. Sriramulu S, et al. Acta Biomed. 2019 Jan 15;89(4):463-469. doi: 10.23750/abm.v89i4.6095. Acta Biomed. 2019. PMID: 30657113 Free PMC article. Review. - Enhancer malfunction in cancer.
Herz HM, Hu D, Shilatifard A. Herz HM, et al. Mol Cell. 2014 Mar 20;53(6):859-66. doi: 10.1016/j.molcel.2014.02.033. Mol Cell. 2014. PMID: 24656127 Free PMC article. Review.
References
- Jemal A, Siegel R, Ward E, Murray T, Xu J, et al. Cancer statistics, 2007. CA Cancer J Clin. 2007;57:43–66. - PubMed
- Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–767. - PubMed
- Georgiades IB, Curtis LJ, Morris RM, Bird CC, Wyllie AH. Heterogeneity studies identify a subset of sporadic colorectal cancers without evidence for chromosomal or microsatellite instability. Oncogene. 1999;18:7933–7940. - PubMed
- Markowitz S. DNA repair defects inactivate tumor suppressor genes and induce hereditary and sporadic colon cancers. J Clin Oncol. 2000;18:75S–80S. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous