Mechanisms of ethanol tolerance in Saccharomyces cerevisiae - PubMed (original) (raw)
Review
Mechanisms of ethanol tolerance in Saccharomyces cerevisiae
Menggen Ma et al. Appl Microbiol Biotechnol. 2010 Jul.
Abstract
Saccharomyces cerevisiae is a superb ethanol producer, yet is also sensitive to higher ethanol concentrations especially under high gravity or very high gravity fermentation conditions. Ethanol tolerance is associated with interplay of complex networks at the genome level. Although significant efforts have been made to study ethanol stress response in past decades, mechanisms of ethanol tolerance are not well known. With developments of genome sequencing and genomic technologies, our understanding of yeast biology has been revolutionarily advanced. More evidence of mechanisms of ethanol tolerance have been discovered involving multiple loci, multi-stress, and complex interactions as well as signal transduction pathways and regulatory networks. Transcription dynamics and profiling studies of key gene sets including heat shock proteins provided insight into tolerance mechanisms. A transient gene expression response or a stress response to ethanol does not necessarily lead to ethanol tolerance in yeast. Reprogrammed pathways and interactions of cofactor regeneration and redox balance observed from studies of tolerant yeast demonstrated the significant importance of a time-course study for ethanol tolerance. In this review, we focus on current advances of our understanding for ethanol-tolerance mechanisms of S. cerevisiae including gene expression responses, pathway-based analysis, signal transduction and regulatory networks. A prototype of global system model for mechanisms of ethanol tolerance is presented.
Similar articles
- Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae.
Hou L. Hou L. Appl Biochem Biotechnol. 2010 Feb;160(4):1084-93. doi: 10.1007/s12010-009-8552-9. Epub 2009 Feb 13. Appl Biochem Biotechnol. 2010. PMID: 19214789 - Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance.
Yang J, Bae JY, Lee YM, Kwon H, Moon HY, Kang HA, Yee SB, Kim W, Choi W. Yang J, et al. Biotechnol Bioeng. 2011 Aug;108(8):1776-87. doi: 10.1002/bit.23141. Epub 2011 Apr 3. Biotechnol Bioeng. 2011. PMID: 21437883 - Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae.
Ding J, Huang X, Zhang L, Zhao N, Yang D, Zhang K. Ding J, et al. Appl Microbiol Biotechnol. 2009 Nov;85(2):253-63. doi: 10.1007/s00253-009-2223-1. Epub 2009 Sep 16. Appl Microbiol Biotechnol. 2009. PMID: 19756577 Review. - [Ethanol tolerance in yeast: molecular mechanisms and genetic engineering].
Zhang Q, Zhao X, Jiang R, Li Q, Bai F. Zhang Q, et al. Sheng Wu Gong Cheng Xue Bao. 2009 Apr;25(4):481-7. Sheng Wu Gong Cheng Xue Bao. 2009. PMID: 19637619 Review. Chinese. - Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering.
Lee KS, Hong ME, Jung SC, Ha SJ, Yu BJ, Koo HM, Park SM, Seo JH, Kweon DH, Park JC, Jin YS. Lee KS, et al. Biotechnol Bioeng. 2011 Mar;108(3):621-31. doi: 10.1002/bit.22988. Epub 2010 Nov 12. Biotechnol Bioeng. 2011. PMID: 21246509
Cited by
- Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae.
Ma M, Liu LZ. Ma M, et al. BMC Microbiol. 2010 Jun 10;10:169. doi: 10.1186/1471-2180-10-169. BMC Microbiol. 2010. PMID: 20537179 Free PMC article. - Ethanol tolerance in engineered strains of Clostridium thermocellum.
Olson DG, Maloney MI, Lanahan AA, Cervenka ND, Xia Y, Pech-Canul A, Hon S, Tian L, Ziegler SJ, Bomble YJ, Lynd LR. Olson DG, et al. Biotechnol Biofuels Bioprod. 2023 Sep 14;16(1):137. doi: 10.1186/s13068-023-02379-z. Biotechnol Biofuels Bioprod. 2023. PMID: 37710260 Free PMC article. - Continuous Culture Adaptation of Methylobacterium extorquens AM1 and TK 0001 to Very High Methanol Concentrations.
Belkhelfa S, Roche D, Dubois I, Berger A, Delmas VA, Cattolico L, Perret A, Labadie K, Perdereau AC, Darii E, Pateau E, de Berardinis V, Salanoubat M, Bouzon M, Döring V. Belkhelfa S, et al. Front Microbiol. 2019 Jun 20;10:1313. doi: 10.3389/fmicb.2019.01313. eCollection 2019. Front Microbiol. 2019. PMID: 31281294 Free PMC article. - Use of atomic force microscopy (AFM) to explore cell wall properties and response to stress in the yeast Saccharomyces cerevisiae.
Francois JM, Formosa C, Schiavone M, Pillet F, Martin-Yken H, Dague E. Francois JM, et al. Curr Genet. 2013 Nov;59(4):187-96. doi: 10.1007/s00294-013-0411-0. Epub 2013 Sep 27. Curr Genet. 2013. PMID: 24071902 Review. - Overexpression of smORF YNR034W-A/EGO4 in Saccharomyces cerevisiae increases the fermentative efficiency of Agave tequilana Weber must.
Vargas-Maya NI, González-Hernández GA, Padilla-Guerrero IE, Torres-Guzmán JC. Vargas-Maya NI, et al. J Ind Microbiol Biotechnol. 2017 Jan;44(1):63-74. doi: 10.1007/s10295-016-1871-2. Epub 2016 Nov 16. J Ind Microbiol Biotechnol. 2017. PMID: 27853904
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous