Time-efficient sparse analysis of histopathological whole slide images - PubMed (original) (raw)
Time-efficient sparse analysis of histopathological whole slide images
Chao-Hui Huang et al. Comput Med Imaging Graph. 2011 Oct-Dec.
Abstract
Histopathological examination is a powerful standard for the prognosis of critical diseases. But, despite significant advances in high-speed and high-resolution scanning devices or in virtual exploration capabilities, the clinical analysis of whole slide images (WSI) largely remains the work of human experts. We propose an innovative platform in which multi-scale computer vision algorithms perform fast analysis of a histopathological WSI. It relies on application-driven for high-resolution and generic for low-resolution image analysis algorithms embedded in a multi-scale framework to rapidly identify the high power fields of interest used by the pathologist to assess a global grading. GPU technologies as well speed up the global time-efficiency of the system. Sparse coding and dynamic sampling constitute the keystone of our approach. These methods are implemented within a computer-aided breast biopsy analysis application based on histopathology images and designed in collaboration with a pathology department. The current ground truth slides correspond to about 36,000 high magnification (40×) high power fields. The processing time to achieve automatic WSI analysis is on a par with the pathologist's performance (about ten minutes a WSI), which constitutes by itself a major contribution of the proposed methodology.
Copyright © 2010 Elsevier Ltd. All rights reserved.
Similar articles
- Utility of whole slide imaging and virtual microscopy in prostate pathology.
Camparo P, Egevad L, Algaba F, Berney DM, Boccon-Gibod L, Compérat E, Evans AJ, Grobholz R, Kristiansen G, Langner C, Lopez-Beltran A, Montironi R, Oliveira P, Vainer B, Varma M. Camparo P, et al. APMIS. 2012 Apr;120(4):298-304. doi: 10.1111/j.1600-0463.2011.02872.x. APMIS. 2012. PMID: 22429212 Review. - Multi-resolution graph-based analysis of histopathological whole slide images: application to mitotic cell extraction and visualization.
Roullier V, Lézoray O, Ta VT, Elmoataz A. Roullier V, et al. Comput Med Imaging Graph. 2011 Oct-Dec;35(7-8):603-15. doi: 10.1016/j.compmedimag.2011.02.005. Epub 2011 May 19. Comput Med Imaging Graph. 2011. PMID: 21600733 - Whole slide imaging diagnostic concordance with light microscopy for breast needle biopsies.
Campbell WS, Hinrichs SH, Lele SM, Baker JJ, Lazenby AJ, Talmon GA, Smith LM, West WW. Campbell WS, et al. Hum Pathol. 2014 Aug;45(8):1713-21. doi: 10.1016/j.humpath.2014.04.007. Epub 2014 Apr 24. Hum Pathol. 2014. PMID: 24913758 - Towards semantic-driven high-content image analysis: an operational instantiation for mitosis detection in digital histopathology.
Racoceanu D, Capron F. Racoceanu D, et al. Comput Med Imaging Graph. 2015 Jun;42:2-15. doi: 10.1016/j.compmedimag.2014.09.004. Epub 2014 Oct 2. Comput Med Imaging Graph. 2015. PMID: 25442055 - New Trends of Emerging Technologies in Digital Pathology.
Bueno G, Fernández-Carrobles MM, Deniz O, García-Rojo M. Bueno G, et al. Pathobiology. 2016;83(2-3):61-9. doi: 10.1159/000443482. Epub 2016 Apr 26. Pathobiology. 2016. PMID: 27100343 Review.
Cited by
- Localization of Diagnostically Relevant Regions of Interest in Whole Slide Images: a Comparative Study.
Mercan E, Aksoy S, Shapiro LG, Weaver DL, Brunyé TT, Elmore JG. Mercan E, et al. J Digit Imaging. 2016 Aug;29(4):496-506. doi: 10.1007/s10278-016-9873-1. J Digit Imaging. 2016. PMID: 26961982 Free PMC article. - Automated Computational Detection, Quantitation, and Mapping of Mitosis in Whole-Slide Images for Clinically Actionable Surgical Pathology Decision Support.
Puri M, Hoover SB, Hewitt SM, Wei BR, Adissu HA, Halsey CHC, Beck J, Bradley C, Cramer SD, Durham AC, Esplin DG, Frank C, Lyle LT, McGill LD, Sánchez MD, Schaffer PA, Traslavina RP, Buza E, Yang HH, Lee MP, Dwyer JE, Simpson RM. Puri M, et al. J Pathol Inform. 2019 Feb 7;10:4. doi: 10.4103/jpi.jpi_59_18. eCollection 2019. J Pathol Inform. 2019. PMID: 30915258 Free PMC article. - Classification of Tumor Histology via Morphometric Context.
Chang H, Borowsky A, Spellman P, Parvin B. Chang H, et al. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2013 Jun 23;2013:10.1109/CVPR.2013.286. doi: 10.1109/CVPR.2013.286. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2013. PMID: 24319324 Free PMC article. - Parallel multiple instance learning for extremely large histopathology image analysis.
Xu Y, Li Y, Shen Z, Wu Z, Gao T, Fan Y, Lai M, Chang EI. Xu Y, et al. BMC Bioinformatics. 2017 Aug 3;18(1):360. doi: 10.1186/s12859-017-1768-8. BMC Bioinformatics. 2017. PMID: 28774262 Free PMC article. - Multi-field-of-view framework for distinguishing tumor grade in ER+ breast cancer from entire histopathology slides.
Basavanhally A, Ganesan S, Feldman M, Shih N, Mies C, Tomaszewski J, Madabhushi A. Basavanhally A, et al. IEEE Trans Biomed Eng. 2013 Aug;60(8):2089-99. doi: 10.1109/TBME.2013.2245129. Epub 2013 Feb 5. IEEE Trans Biomed Eng. 2013. PMID: 23392336 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical