Automated and semi-automated cell tracking: addressing portability challenges - PubMed (original) (raw)
Automated and semi-automated cell tracking: addressing portability challenges
A Kan et al. J Microsc. 2011 Nov.
Abstract
Cell tracking is a key task in the high-throughput quantitative study of important biological processes, such as immune system regulation and neurogenesis. Variability in cell density and dynamics in different videos, hampers portability of existing trackers across videos. We address these potability challenges in order to develop a portable cell tracking algorithm. Our algorithm can handle noise in cell segmentation as well as divisions and deaths of cells. We also propose a parameter-free variation of our tracker. In the tracker, we employ a novel method for recovering the distribution of cell displacements. Further, we present a mathematically justified procedure for determining the gating distance in relation to tracking performance. For the range of real videos tested, our tracker correctly recovers on average 96% of cell moves, and outperforms an advanced probabilistic tracker when the cell detection quality is high. The scalability of our tracker was tested on synthetic videos with up to 200 cells per frame. For more challenging tracking conditions, we propose a novel semi-automated framework that can increase the ratio of correctly recovered tracks by 12%, through selective manual inspection of only 10% of all frames in a video.
© 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.
Similar articles
- Coupled minimum-cost flow cell tracking for high-throughput quantitative analysis.
Padfield D, Rittscher J, Roysam B. Padfield D, et al. Med Image Anal. 2011 Aug;15(4):650-68. doi: 10.1016/j.media.2010.07.006. Epub 2010 Aug 13. Med Image Anal. 2011. PMID: 20864383 - A Monte Carlo approach to rolling leukocyte tracking in vivo.
Cui J, Acton ST, Lin Z. Cui J, et al. Med Image Anal. 2006 Aug;10(4):598-610. doi: 10.1016/j.media.2006.05.006. Epub 2006 Jul 28. Med Image Anal. 2006. PMID: 16876461 - An affine transformation invariance approach to cell tracking.
Cui J, Ray N, Acton ST, Lin Z. Cui J, et al. Comput Med Imaging Graph. 2008 Oct;32(7):554-65. doi: 10.1016/j.compmedimag.2008.06.004. Epub 2008 Jul 30. Comput Med Imaging Graph. 2008. PMID: 18667292 - Segmenting and Tracking Multiple Dividing Targets Using ilastik.
Haubold C, Schiegg M, Kreshuk A, Berg S, Koethe U, Hamprecht FA. Haubold C, et al. Adv Anat Embryol Cell Biol. 2016;219:199-229. doi: 10.1007/978-3-319-28549-8_8. Adv Anat Embryol Cell Biol. 2016. PMID: 27207368 Review. - Challenges in long-term imaging and quantification of single-cell dynamics.
Skylaki S, Hilsenbeck O, Schroeder T. Skylaki S, et al. Nat Biotechnol. 2016 Nov 8;34(11):1137-1144. doi: 10.1038/nbt.3713. Nat Biotechnol. 2016. PMID: 27824848 Review.
Cited by
- Fully-automatic deep learning-based analysis for determination of the invasiveness of breast cancer cells in an acoustic trap.
Youn S, Lee K, Son J, Yang IH, Hwang JY. Youn S, et al. Biomed Opt Express. 2020 May 11;11(6):2976-2995. doi: 10.1364/BOE.390558. eCollection 2020 Jun 1. Biomed Opt Express. 2020. PMID: 32637236 Free PMC article. - A probabilistic approach to joint cell tracking and segmentation in high-throughput microscopy videos.
Arbelle A, Reyes J, Chen JY, Lahav G, Riklin Raviv T. Arbelle A, et al. Med Image Anal. 2018 Jul;47:140-152. doi: 10.1016/j.media.2018.04.006. Epub 2018 Apr 22. Med Image Anal. 2018. PMID: 29747154 Free PMC article. - Quantitative profiling of innate immune activation by viral infection in single cells.
Timm AC, Warrick JW, Yin J. Timm AC, et al. Integr Biol (Camb). 2017 Sep 18;9(9):782-791. doi: 10.1039/c7ib00082k. Integr Biol (Camb). 2017. PMID: 28831492 Free PMC article. - Machine learning applications in cell image analysis.
Kan A. Kan A. Immunol Cell Biol. 2017 Jul;95(6):525-530. doi: 10.1038/icb.2017.16. Epub 2017 Mar 15. Immunol Cell Biol. 2017. PMID: 28294138 Review. - Tools for Single-Cell Kinetic Analysis of Virus-Host Interactions.
Warrick JW, Timm A, Swick A, Yin J. Warrick JW, et al. PLoS One. 2016 Jan 11;11(1):e0145081. doi: 10.1371/journal.pone.0145081. eCollection 2016. PLoS One. 2016. PMID: 26752057 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources