An overview of population genetic data simulation - PubMed (original) (raw)
Review
An overview of population genetic data simulation
Xiguo Yuan et al. J Comput Biol. 2012 Jan.
Abstract
Simulation studies in population genetics play an important role in helping to better understand the impact of various evolutionary and demographic scenarios on sequence variation and sequence patterns, and they also permit investigators to better assess and design analytical methods in the study of disease-associated genetic factors. To facilitate these studies, it is imperative to develop simulators with the capability to accurately generate complex genomic data under various genetic models. Currently, a number of efficient simulation software packages for large-scale genomic data are available, and new simulation programs with more sophisticated capabilities and features continue to emerge. In this article, we review the three basic simulation frameworks--coalescent, forward, and resampling--and some of the existing simulators that fall under these frameworks, comparing them with respect to their evolutionary and demographic scenarios, their computational complexity, and their specific applications. Additionally, we address some limitations in current simulation algorithms and discuss future challenges in the development of more powerful simulation tools.
Figures
FIG. 1.
Kingman's n-coalescent process.
FIG. 2.
The general architecture of forward-time simulation.
Similar articles
- GENOMEPOP: a program to simulate genomes in populations.
Carvajal-Rodríguez A. Carvajal-Rodríguez A. BMC Bioinformatics. 2008 Apr 30;9:223. doi: 10.1186/1471-2105-9-223. BMC Bioinformatics. 2008. PMID: 18447924 Free PMC article. - Critical assessment of coalescent simulators in modeling recombination hotspots in genomic sequences.
Yang T, Deng HW, Niu T. Yang T, et al. BMC Bioinformatics. 2014 Jan 3;15:3. doi: 10.1186/1471-2105-15-3. BMC Bioinformatics. 2014. PMID: 24387001 Free PMC article. - SLiM 2: Flexible, Interactive Forward Genetic Simulations.
Haller BC, Messer PW. Haller BC, et al. Mol Biol Evol. 2017 Jan;34(1):230-240. doi: 10.1093/molbev/msw211. Epub 2016 Oct 3. Mol Biol Evol. 2017. PMID: 27702775 - Computer simulations: tools for population and evolutionary genetics.
Hoban S, Bertorelle G, Gaggiotti OE. Hoban S, et al. Nat Rev Genet. 2012 Jan 10;13(2):110-22. doi: 10.1038/nrg3130. Nat Rev Genet. 2012. PMID: 22230817 Review. - Genome simulation approaches for synthesizing in silico datasets for human genomics.
Ritchie MD, Bush WS. Ritchie MD, et al. Adv Genet. 2010;72:1-24. doi: 10.1016/B978-0-12-380862-2.00001-1. Adv Genet. 2010. PMID: 21029846 Review.
Cited by
- Simulating pollen flow and field sampling constraints helps revise seed sampling recommendations for conserving genetic diversity.
Rosenberger KJ, Hoban S. Rosenberger KJ, et al. Appl Plant Sci. 2024 Feb 2;12(3):e11561. doi: 10.1002/aps3.11561. eCollection 2024 May-Jun. Appl Plant Sci. 2024. PMID: 38912130 Free PMC article. - Population genetic simulation: Benchmarking frameworks for non-standard models of natural selection.
Johnson OL, Tobler R, Schmidt JM, Huber CD. Johnson OL, et al. Mol Ecol Resour. 2024 Apr;24(3):e13930. doi: 10.1111/1755-0998.13930. Epub 2024 Jan 21. Mol Ecol Resour. 2024. PMID: 38247258 - Learning the kernel for rare variant genetic association test.
Falk I, Zhao M, Nait Saada J, Guo Q. Falk I, et al. Front Genet. 2023 Oct 9;14:1245238. doi: 10.3389/fgene.2023.1245238. eCollection 2023. Front Genet. 2023. PMID: 37886683 Free PMC article. - Mate selection: A useful approach to maximize genetic gain and control inbreeding in genomic and conventional oil palm (Elaeis guineensis Jacq.) hybrid breeding.
Tchounke B, Sanchez L, Bell JM, Cros D. Tchounke B, et al. PLoS Comput Biol. 2023 Sep 11;19(9):e1010290. doi: 10.1371/journal.pcbi.1010290. eCollection 2023 Sep. PLoS Comput Biol. 2023. PMID: 37695766 Free PMC article. - Simulating plasticity as a framework for understanding habitat selection and its role in adaptive capacity and extinction risk through an expansion of CDMetaPOP.
Seaborn T, Landguth EL, Caudill CC. Seaborn T, et al. Mol Ecol Resour. 2023 Aug;23(6):1458-1472. doi: 10.1111/1755-0998.13799. Epub 2023 Apr 20. Mol Ecol Resour. 2023. PMID: 37081173 Free PMC article.
References
- Calafell F. Grigorenko E.L. Chikanian A.A., et al. Haplotype evolution and linkage disequilibrium: a simulation study. Hum. Hered. 2001;51:85–96. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources