Inhibitory effects of crude extracts from some edible Thai plants against replication of hepatitis B virus and human liver cancer cells - PubMed (original) (raw)

Inhibitory effects of crude extracts from some edible Thai plants against replication of hepatitis B virus and human liver cancer cells

Wanwisa Waiyaput et al. BMC Complement Altern Med. 2012.

Abstract

Background: Edible plants such as Cratoxylum formosum (Jack) Dyer, Curcumin longa Lin, Momordica charantia Lin and Moringa oleifera Lam have long been believed in Thai culture to relieve ulcers and the symptoms of liver disease. However, little is known about their anti-liver cancer properties and antiviral activity against hepatitis B virus (HBV). The aim of this study was to investigate the anti-liver cancer and anti-HBV activities of crude extracts from these edible plants on human liver cancer cells.

Methods: Plant samples were prepared and extracted using buffer and hydro-alcoholic solvents. The MTT assay was performed to investigate the effects of the plant extracts on the cell viability of HepG2 cells. The inhibitory effect on replication of HBV was analysed by determining the level of HBV covalently closed circular DNA (cccDNA) in transiently transfected HepG2 cells with the DNA expression plasmid of the HBV genome using a quantitative real-time PCR.

Results: Buffer and hydroalcoholic extracts from C. formosum (leaf) reduced cell viability of HepG2 cells and they also inhibited HBV cccDNA. Crude extracts from C. longa (bulb) in both solvents did not have any cytotoxic effects on the HepG2 cells, but they significantly decreased the level of HBV cccDNA. Buffer extracts from the leaves of M. charantia and the fruits of M. oleifera showed to have anti-HBV activity and also a mild cytotoxicity effect on the HepG2 cells. In addition, leaves of M. Oleifera extracted by hydroalcoholic solvent drastically decreased the level of cccDNA in transiently transfected HepG2 cells.

Conclusion: Some crude extracts of edible plants contain compounds that demonstrate anti-liver cancer and anti-HBV activities.

PubMed Disclaimer

Figures

Figure 1

Figure 1

Optimisation experiment of MTT assay on COS-7 cells. Cells were treated with various concentrations of C. longa hot water extract as indicated in quadruplicate. After 3 days (A); 5 days (B); and 7 days (C) of incubation, cells were subjected to viability analysis using MTT assay with different amounts of MTT (2-8 μg). Bar graph represents a mean value whereas an error bar indicates the uncertainty value of three independent experiments.

Figure 2

Figure 2

The cytotoxicity effects from plant extracts on COS-7 and HepG2 cells. (A) The effect from hot water extract of C. longa (bulb), (B) The effects from buffer extracts and (C) The effects from 80% hydroalcoholic extracts. The white bars represent the percentage of cell viability of COS-7 cells whereas the black bars represent the percentage of cell viability of HepG2 cells. Bar graph represents a mean value whereas an error bar indicates the uncertainty value of three independent experiments. “*” and “**” indicated significant inhibitory effect when compared with both cell lines at p < 0.01 and p < 0.001 (by t-test) respectively.

Figure 3

Figure 3

Effects of crude extracts on the level of cccDNA in transiently transfected HepG2 cells with the DNA expression plasmid of HBV genome. HepG2 cells were treated with either 30 μg/mL of hydroalcoholic extracts or 0.3 μg of buffer extracts and were transfected with 1 μg of the DNA expression plasmid of HBV genome using Lipofectamine ™ 2000 in triplicate. After 5 days of incubation, the total DNA of each well was extracted and subjected for quantitative real-time analysis. Bar graph represents a mean value whereas an error bar indicates the uncertainty value of three independent experiments. “*” and “**” indicate significant inhibitory effect when compared with the positive cccDNA at p < 0.01 and p < 0.001 (by t- test) respectively. “F” is for fruit and “L” is for leaf.

Similar articles

Cited by

References

    1. Tillmann HL. Antiviral therapy and resistance with hepatitis B virus infection. World J Gastroenterol. 2007;13:125–140. - PMC - PubMed
    1. Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 2003;3:768–780. doi: 10.1038/nrc1189. - DOI - PubMed
    1. Arakawa T, Yamasaki H, Ikeda K, Ejima D, Naito T, Koyama AH. Antiviral and virucidal activities of natural products. Curr Med Chem. 2009;16:2485–2497. doi: 10.2174/092986709788682065. - DOI - PubMed
    1. Neergheen VS, Bahorun T, Taylor EW, Jen LS, Aruoma OI. Targeting specific cell signaling transduction pathways by dietary and medicinal phytochemicals in cancer chemoprevention. Toxicology. 2010;278:229–241. doi: 10.1016/j.tox.2009.10.010. - DOI - PubMed
    1. Chattopadhyay D, Sarkar MC, Chatterjee T, Sharma Dey R, Bag P, Chakraborti S, Khan MT. Recent advancements for the evaluation of anti-viral activities of natural products. N Biotechnol. 2009;25:347–368. doi: 10.1016/j.nbt.2009.03.007. - DOI - PMC - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources