Capturing the time-varying drivers of an epidemic using stochastic dynamical systems - PubMed (original) (raw)
Capturing the time-varying drivers of an epidemic using stochastic dynamical systems
Joseph Dureau et al. Biostatistics. 2013 Jul.
Abstract
Epidemics are often modeled using non-linear dynamical systems observed through partial and noisy data. In this paper, we consider stochastic extensions in order to capture unknown influences (changing behaviors, public interventions, seasonal effects, etc.). These models assign diffusion processes to the time-varying parameters, and our inferential procedure is based on a suitably adjusted adaptive particle Markov chain Monte Carlo algorithm. The performance of the proposed computational methods is validated on simulated data and the adopted model is applied to the 2009 H1N1 pandemic in England. In addition to estimating the effective contact rate trajectories, the methodology is applied in real time to provide evidence in related public health decisions. Diffusion-driven susceptible exposed infected retired-type models with age structure are also introduced.
Keywords: Bayesian inference; Particle MCMC; Population epidemic model; Time-varying parameters.
Similar articles
- Inference for discretely observed stochastic kinetic networks with applications to epidemic modeling.
Choi B, Rempala GA. Choi B, et al. Biostatistics. 2012 Jan;13(1):153-65. doi: 10.1093/biostatistics/kxr019. Epub 2011 Aug 10. Biostatistics. 2012. PMID: 21835814 Free PMC article. - Bayesian model choice for epidemic models with two levels of mixing.
Knock ES, O'Neill PD. Knock ES, et al. Biostatistics. 2014 Jan;15(1):46-59. doi: 10.1093/biostatistics/kxt023. Epub 2013 Jul 24. Biostatistics. 2014. PMID: 23887980 - Bayesian inference for stochastic multitype epidemics in structured populations using sample data.
O'Neill PD. O'Neill PD. Biostatistics. 2009 Oct;10(4):779-91. doi: 10.1093/biostatistics/kxp031. Epub 2009 Jul 31. Biostatistics. 2009. PMID: 19648227 - Statistical inference for stochastic simulation models--theory and application.
Hartig F, Calabrese JM, Reineking B, Wiegand T, Huth A. Hartig F, et al. Ecol Lett. 2011 Aug;14(8):816-27. doi: 10.1111/j.1461-0248.2011.01640.x. Epub 2011 Jun 17. Ecol Lett. 2011. PMID: 21679289 Review. - Phylogenetic and epidemic modeling of rapidly evolving infectious diseases.
Kühnert D, Wu CH, Drummond AJ. Kühnert D, et al. Infect Genet Evol. 2011 Dec;11(8):1825-41. doi: 10.1016/j.meegid.2011.08.005. Epub 2011 Aug 31. Infect Genet Evol. 2011. PMID: 21906695 Free PMC article. Review.
Cited by
- How Modelling Can Enhance the Analysis of Imperfect Epidemic Data.
Cauchemez S, Hoze N, Cousien A, Nikolay B, Ten Bosch Q. Cauchemez S, et al. Trends Parasitol. 2019 May;35(5):369-379. doi: 10.1016/j.pt.2019.01.009. Epub 2019 Feb 6. Trends Parasitol. 2019. PMID: 30738632 Free PMC article. Review. - Bayesian non-parametric inference for stochastic epidemic models using Gaussian Processes.
Xu X, Kypraios T, O'Neill PD. Xu X, et al. Biostatistics. 2016 Oct;17(4):619-33. doi: 10.1093/biostatistics/kxw011. Epub 2016 Mar 18. Biostatistics. 2016. PMID: 26993062 Free PMC article. - The basic reproduction number can be accurately estimated within 14 days after societal lockdown: The early stage of the COVID-19 epidemic in Denmark.
Valentin JB, Møller H, Johnsen SP. Valentin JB, et al. PLoS One. 2021 Feb 16;16(2):e0247021. doi: 10.1371/journal.pone.0247021. eCollection 2021. PLoS One. 2021. PMID: 33592029 Free PMC article. - Temporal Changes in Ebola Transmission in Sierra Leone and Implications for Control Requirements: a Real-time Modelling Study.
Camacho A, Kucharski A, Aki-Sawyerr Y, White MA, Flasche S, Baguelin M, Pollington T, Carney JR, Glover R, Smout E, Tiffany A, Edmunds WJ, Funk S. Camacho A, et al. PLoS Curr. 2015 Feb 10;7:ecurrents.outbreaks.406ae55e83ec0b5193e30856b9235ed2. doi: 10.1371/currents.outbreaks.406ae55e83ec0b5193e30856b9235ed2. PLoS Curr. 2015. PMID: 25737806 Free PMC article. - Applying particle filtering in both aggregated and age-structured population compartmental models of pre-vaccination measles.
Li X, Doroshenko A, Osgood ND. Li X, et al. PLoS One. 2018 Nov 2;13(11):e0206529. doi: 10.1371/journal.pone.0206529. eCollection 2018. PLoS One. 2018. PMID: 30388138 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources