mir-17-92: a polycistronic oncomir with pleiotropic functions - PubMed (original) (raw)
Review
mir-17-92: a polycistronic oncomir with pleiotropic functions
Virginie Olive et al. Immunol Rev. 2013 May.
Abstract
Neoplastic transformation is caused by accumulation of genetic lesions that ultimately convert normal cells into tumor cells with uncontrolled proliferation and survival, unlimited replicative potential, and invasive growth. Emerging evidence has highlighted the functional importance of non-coding RNAs, particularly microRNAs (miRNAs), in the initiation and progression of tumor development. The mir-17-92 miRNA is among the best characterized miRNA oncogenes, whose genomic amplification or aberrant elevation are frequently observed in a variety of tumor types. Unlike protein-coding oncogenes, where one transcript produces one protein, mir-17-92 encodes a polycistronic miRNA transcript that yields six individual miRNA components. This unique gene structure, shared by many important miRNA oncogenes and tumor suppressors, underlies the unique functionality of mir-17-92 in a cell type and context-dependent manner. Recent functional dissection of mir-17-92 indicates that individual mir-17-92 components perform distinct biological functions, which collectively regulate multiple related cellular processes during development and disease. The structural complexity of mir-17-92 as a polycistronic miRNA oncogene, along with the complex mode of interactions among its components, constitutes the molecular basis for its unique functional complexity during normal and tumor development.
© 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
Figures
Fig. 1
mir-17-92 encodes a polycistronic miRNA oncogene. A. The gene structure of the mir-17-92 polycistron. mir-17-92 encodes a miRNA precursor that yields 6 mature miRNAs. Based on seed sequence homology, these six miRNAs belong to four miRNA families. Homologous miRNA components are indicated by the same color. B. mir-17-92 has two closely related homologues in mammals. The mir-106a-393 and mir-106b-25 clusters contain homologous miRNAs to a subset of mir-17-92 components with a conserved genome arrangement.
Fig. 2
A diagram of possible regulatory mechanisms that collectively modulate the biological functions of the mir-17-92 polycistronic oncomir.
Similar articles
- mir-17-92, a cluster of miRNAs in the midst of the cancer network.
Olive V, Jiang I, He L. Olive V, et al. Int J Biochem Cell Biol. 2010 Aug;42(8):1348-54. doi: 10.1016/j.biocel.2010.03.004. Epub 2010 Mar 19. Int J Biochem Cell Biol. 2010. PMID: 20227518 Free PMC article. Review. - MicroRNAs: small but potent oncogenes or tumor suppressors.
Lee YS, Dutta A. Lee YS, et al. Curr Opin Investig Drugs. 2006 Jun;7(6):560-4. Curr Opin Investig Drugs. 2006. PMID: 16784027 Review. - An expanding universe of the non-coding genome in cancer biology.
Xue B, He L. Xue B, et al. Carcinogenesis. 2014 Jun;35(6):1209-16. doi: 10.1093/carcin/bgu099. Epub 2014 Apr 18. Carcinogenesis. 2014. PMID: 24747961 Free PMC article. Review. - A step-by-step microRNA guide to cancer development and metastasis.
Markopoulos GS, Roupakia E, Tokamani M, Chavdoula E, Hatziapostolou M, Polytarchou C, Marcu KB, Papavassiliou AG, Sandaltzopoulos R, Kolettas E. Markopoulos GS, et al. Cell Oncol (Dordr). 2017 Aug;40(4):303-339. doi: 10.1007/s13402-017-0341-9. Epub 2017 Jul 26. Cell Oncol (Dordr). 2017. PMID: 28748501 Review. - A component of the mir-17-92 polycistronic oncomir promotes oncogene-dependent apoptosis.
Olive V, Sabio E, Bennett MJ, De Jong CS, Biton A, McGann JC, Greaney SK, Sodir NM, Zhou AY, Balakrishnan A, Foth M, Luftig MA, Goga A, Speed TP, Xuan Z, Evan GI, Wan Y, Minella AC, He L. Olive V, et al. Elife. 2013 Oct 15;2:e00822. doi: 10.7554/eLife.00822. Elife. 2013. PMID: 24137534 Free PMC article.
Cited by
- MiR-92 Family Members Form a Cluster Required for Notochord Tubulogenesis in Urochordate Ciona savignyi.
Yang L, Zhang X, Liu C, Zhang J, Dong B. Yang L, et al. Genes (Basel). 2021 Mar 12;12(3):406. doi: 10.3390/genes12030406. Genes (Basel). 2021. PMID: 33809016 Free PMC article. - High copy number variation of cancer-related microRNA genes and frequent amplification of DICER1 and DROSHA in lung cancer.
Czubak K, Lewandowska MA, Klonowska K, Roszkowski K, Kowalewski J, Figlerowicz M, Kozlowski P. Czubak K, et al. Oncotarget. 2015 Sep 15;6(27):23399-416. doi: 10.18632/oncotarget.4351. Oncotarget. 2015. PMID: 26156018 Free PMC article. - Non-Coding RNA Mediated Regulation of Allogeneic T Cell Responses After Hematopoietic Transplantation.
Peltier D, Reddy P. Peltier D, et al. Front Immunol. 2018 Jun 15;9:1110. doi: 10.3389/fimmu.2018.01110. eCollection 2018. Front Immunol. 2018. PMID: 29963039 Free PMC article. Review. - The Hippo pathway effectors TAZ/YAP regulate dicer expression and microRNA biogenesis through Let-7.
Chaulk SG, Lattanzi VJ, Hiemer SE, Fahlman RP, Varelas X. Chaulk SG, et al. J Biol Chem. 2014 Jan 24;289(4):1886-91. doi: 10.1074/jbc.C113.529362. Epub 2013 Dec 9. J Biol Chem. 2014. PMID: 24324261 Free PMC article. - MicroRNA aberrations: An emerging field for gallbladder cancer management.
Chandra V, Kim JJ, Mittal B, Rai R. Chandra V, et al. World J Gastroenterol. 2016 Feb 7;22(5):1787-99. doi: 10.3748/wjg.v22.i5.1787. World J Gastroenterol. 2016. PMID: 26855538 Free PMC article. Review.
References
- Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5. - PubMed
- Zamore PD, Haley B. Ribo-gnome: the big world of small RNAs. Science (New York, N.Y.) 2005;309:1519–24. - PubMed
- Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nature reviews. Molecular cell biology. 2009;10:126–39. - PubMed
- Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature reviews. Genetics. 2008;9:102–14. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources