Pleiotropic effects of coat colour-associated mutations in humans, mice and other mammals - PubMed (original) (raw)
Review
. 2013 Jun-Jul;24(6-7):576-86.
doi: 10.1016/j.semcdb.2013.03.014. Epub 2013 Apr 9.
Affiliations
- PMID: 23583561
- DOI: 10.1016/j.semcdb.2013.03.014
Review
Pleiotropic effects of coat colour-associated mutations in humans, mice and other mammals
Monika Reissmann et al. Semin Cell Dev Biol. 2013 Jun-Jul.
Abstract
The characterisation of the pleiotropic effects of coat colour-associated mutations in mammals illustrates that sensory organs and nerves are particularly affected by disorders because of the shared origin of melanocytes and neurocytes in the neural crest; e.g. the eye-colour is a valuable indicator of disorders in pigment production and eye dysfunctions. Disorders related to coat colour-associated alleles also occur in the skin (melanoma), reproductive tract and immune system. Additionally, the coat colour phenotype of an individual influences its general behaviour and fitness. Mutations in the same genes often produce similar coat colours and pleiotropic effects in different species (e.g., KIT [reproductive disorders, lethality], EDNRB [megacolon] and LYST [CHS]). Whereas similar disorders and similar-looking coat colour phenotypes sometimes have a different genetic background (e.g., deafness [EDN3/EDNRB, MITF, PAX and SNAI2] and visual diseases [OCA2, RAB38, SLC24A5, SLC45A2, TRPM1 and TYR]). The human predilection for fancy phenotypes that ignore disorders and genetic defects is a major driving force for the increase of pleiotropic effects in domestic species and laboratory subjects since domestication has commenced approximately 18,000 years ago.
Keywords: AS; ASIP; ATRN; Agouti signalling protein; Albino; Angelman syndrome; Attractin (mahogany); BLOC; Biogenesis of lysosomal organelles complex; CCSD; CHS; CSD; CSNB; Canine congenital sensorineural deafness; Chediak-Higashi syndrome; Coat colour gene; Congenital sensorineural deafness; Congenital stationary night blindness; Disorder; EDN3; EDNRB; Endothelin 3; Endothelin receptor type B; Epistasis; Fitness; GS; Griscelli syndrome (type 1 or 2); HPS; HSCR; Hermansky-Pudlak syndrome with different types; Hirschsprung disease; IPE; Iris pigment epithelium; KIT; KIT ligand (steel factor); KITLG; LFS; LYST; Lavender foal syndrome; Lethal; Leucism; Lysosomal trafficking regulator; MC1R; MCOA; MCOLN3; MGRN1; MITF; MYO5A; Mahogunin ring finger 1 (E3 ubiquitin protein ligase); Melanocortin 1 receptor; Melanoma; Microphthalmia-associated transcription factor; Mucolipin 3 (TRPML3); Multiple congenital ocular anomalies; Myosin VA (heavy chain 12, myoxin); OA; OCA; OCA2; OLWS; OSTM1; Ocular albinism; Oculocutaneous albinism II (pink-eye dilution homolog); Oculocutaneous albinism type 1–4; Osteopetrosis associated transmembrane protein 1 (Grey lethal osteopetrosis); Overo lethal white syndrome; PAX3; PMEL; PWS; Paired box 3; Pleiotropy; Prader-Willi syndrome; Premelanosome protein (Pmel17, SILV); RAB27A; RAB27A member RAS oncogene family; RAB38; RAB38 member RAS oncogene family; RPE; Reproduction; Retinal pigmented epithelium; SLC24A5; SLC2A9; SLC45A2; SNAI2; STX17; Snail homolog 2 (Drosophila), (SLUG), SOX10, SRY (sex determining region Y)-box 10; Solute carrier family 2 (facilitated glucose transporter), member 9; Solute carrier family 24, member 5; Solute carrier family 45, member 2, MATP; Syntaxin 17; TRPM1; TYR; Tameness; Transient receptor potential cation channel, subfamily M, member 1 (melastatin-1); Tyrosinase, TYRP1, Tyrosinase-related protein 1; V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog, tyrosine kinase receptor (c-kit); WS; Waardenburg syndrome (type 1, type 2 combined with Tietz syndrome type 3 Klein-Waardenburg syndrome, type 4 Waardenburg-Shah syndrome); alpha-melanocyte-stimulating hormone; αMSH.
Copyright © 2013 Elsevier Ltd. All rights reserved.
Similar articles
- SLC45A2 mutation frequency in Oculocutaneous Albinism Italian patients doesn't differ from other European studies.
Mauri L, Barone L, Al Oum M, Del Longo A, Piozzi E, Manfredini E, Stanzial F, Benedicenti F, Penco S, Patrosso MC. Mauri L, et al. Gene. 2014 Jan 1;533(1):398-402. doi: 10.1016/j.gene.2013.09.053. Epub 2013 Oct 3. Gene. 2014. PMID: 24096233 - [Hereditary hypomelanocytoses: the role of PAX3, SOX10, MITF, SNAI2, KIT, EDN3 and EDNRB genes].
Otręba M, Miliński M, Buszman E, Wrześniok D, Beberok A. Otręba M, et al. Postepy Hig Med Dosw (Online). 2013 Nov 26;67:1109-18. doi: 10.5604/17322693.1077722. Postepy Hig Med Dosw (Online). 2013. PMID: 24379252 Review. Polish. - Molecular basis of congenital hypopigmentary disorders in humans: a review.
Boissy RE, Nordlund JJ. Boissy RE, et al. Pigment Cell Res. 1997 Feb-Apr;10(1-2):12-24. doi: 10.1111/j.1600-0749.1997.tb00461.x. Pigment Cell Res. 1997. PMID: 9170158 Review. - Cell-autonomous and cell non-autonomous signaling through endothelin receptor B during melanocyte development.
Hou L, Pavan WJ, Shin MK, Arnheiter H. Hou L, et al. Development. 2004 Jul;131(14):3239-47. doi: 10.1242/dev.01193. Epub 2004 Jun 16. Development. 2004. PMID: 15201217 - Analysis of ocular hypopigmentation in Rab38cht/cht mice.
Brooks BP, Larson DM, Chan CC, Kjellstrom S, Smith RS, Crawford MA, Lamoreux L, Huizing M, Hess R, Jiao X, Hejtmancik JF, Maminishkis A, John SW, Bush R, Pavan WJ. Brooks BP, et al. Invest Ophthalmol Vis Sci. 2007 Sep;48(9):3905-13. doi: 10.1167/iovs.06-1464. Invest Ophthalmol Vis Sci. 2007. PMID: 17724166 Free PMC article.
Cited by
- Transcriptome-based screening and validation of key genes for wool color in cashmere goats.
Apar R, Ye X, Lv X. Apar R, et al. Genes Genomics. 2024 Oct;46(10):1239-1252. doi: 10.1007/s13258-024-01562-2. Epub 2024 Sep 11. Genes Genomics. 2024. PMID: 39259488 - Agouti-Signaling Protein and Melanocortin-1-Receptor Mutations Associated with Coat Color Phenotypes in Fallow Deer (Dama dama).
Reissmann M, Ullrich E, Bergfeld U, Ludwig A. Reissmann M, et al. Genes (Basel). 2024 Aug 11;15(8):1055. doi: 10.3390/genes15081055. Genes (Basel). 2024. PMID: 39202415 Free PMC article. - Mutations in the albinism gene oca2 alter vision-dependent prey capture behavior in the Mexican tetra.
Choy S, Thakur S, Polyakov E, Abdelaziz J, Lloyd E, Enriquez M, Jayan N, Fily Y, McGaugh S, Keene AC, Kowalko JE. Choy S, et al. bioRxiv [Preprint]. 2024 Jun 20:2024.06.17.599419. doi: 10.1101/2024.06.17.599419. bioRxiv. 2024. PMID: 38948816 Free PMC article. Preprint. - Genomic imputation of ancient Asian populations contrasts local adaptation in pre- and post-agricultural Japan.
Cooke NP, Murray M, Cassidy LM, Mattiangeli V, Okazaki K, Kasai K, Gakuhari T, Bradley DG, Nakagome S. Cooke NP, et al. iScience. 2024 May 21;27(6):110050. doi: 10.1016/j.isci.2024.110050. eCollection 2024 Jun 21. iScience. 2024. PMID: 38883821 Free PMC article. - Uncovering the genetic diversity and adaptability of Butuo Black Sheep through whole-genome re-sequencing.
Huang Z, Wang J, Qi D, Li X, Wang J, Zhou J, Ruan Y, Laer Y, Baqian Z, Yang C. Huang Z, et al. PLoS One. 2024 Jun 10;19(6):e0303419. doi: 10.1371/journal.pone.0303419. eCollection 2024. PLoS One. 2024. PMID: 38857228 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous