Interactions between zinc transporter-8 gene (SLC30A8) and plasma zinc concentrations for impaired glucose regulation and type 2 diabetes - PubMed (original) (raw)
. 2014 May;63(5):1796-803.
doi: 10.2337/db13-0606. Epub 2013 Dec 4.
Affiliations
- PMID: 24306209
- DOI: 10.2337/db13-0606
Interactions between zinc transporter-8 gene (SLC30A8) and plasma zinc concentrations for impaired glucose regulation and type 2 diabetes
Zhilei Shan et al. Diabetes. 2014 May.
Abstract
Although both SLC30A8 rs13266634 single nucleotide polymorphism and plasma zinc concentrations have been associated with impaired glucose regulation (IGR) and type 2 diabetes (T2D), their interactions for IGR and T2D remain unclear. Therefore, to assess zinc-SLC30A8 interactions, we performed a case-control study in 1,796 participants: 218 newly diagnosed IGR patients, 785 newly diagnosed T2D patients, and 793 individuals with normal glucose tolerance. After adjustment for age, sex, BMI, family history of diabetes, and hypertension, the multivariable odds ratio (OR) of T2D associated with a 10 µg/dL higher plasma zinc level was 0.87 (95% CI 0.85-0.90). Meanwhile, the OR of SLC30A8 rs13266634 homozygous genotypes CC compared with TT was 1.53 (1.11-2.09) for T2D. Similar associations were found in IGR and IGR&T2D groups. Each 10 µg/dL increment of plasma zinc was associated with 22% (OR 0.78 [0.72-0.85]) lower odds of T2D in TT genotype carriers, 17% (0.83 [0.80-0.87]) lower odds in CT genotype carriers, and 7% (0.93 [0.90-0.97]) lower odds in CC genotype carriers (P for interaction = 0.01). Our study suggested that the C allele of rs13266634 was associated with higher odds of T2D, and higher plasma zinc was associated with lower odds. The inverse association of plasma zinc concentrations with T2D was modified by SLC30A8 rs13266634. Further studies are warranted to confirm our findings and clarify the mechanisms underlying the interaction between plasma zinc and the SLC30A8 gene in relation to T2D.
Comment in
- Zinc-rs13266634 and the arrival of diabetes pharmacogenetics: the "zinc mystique".
Maruthur NM, Mitchell BD. Maruthur NM, et al. Diabetes. 2014 May;63(5):1463-4. doi: 10.2337/db14-0151. Diabetes. 2014. PMID: 24757200 Free PMC article. No abstract available.
Similar articles
- Interactions between plasma copper concentrations and SOD1 gene polymorphism for impaired glucose regulation and type 2 diabetes.
Yin J, Wang X, Li S, Zhu Y, Chen S, Li P, Luo C, Huang Y, Li X, Hu X, Yang W, Bao W, Shan Z, Liu L. Yin J, et al. Redox Biol. 2019 Jun;24:101172. doi: 10.1016/j.redox.2019.101172. Epub 2019 Mar 18. Redox Biol. 2019. PMID: 30909159 Free PMC article. - Zinc transporter-8 gene (SLC30A8) is associated with type 2 diabetes in Chinese.
Xiang J, Li XY, Xu M, Hong J, Huang Y, Tan JR, Lu X, Dai M, Yu B, Ning G. Xiang J, et al. J Clin Endocrinol Metab. 2008 Oct;93(10):4107-12. doi: 10.1210/jc.2008-0161. Epub 2008 Jul 15. J Clin Endocrinol Metab. 2008. PMID: 18628523 - Relationship between ZnT8Ab, the SLC30A8 gene and disease progression in children with newly diagnosed type 1 diabetes.
Nielsen LB, Vaziri-Sani F, Pörksen S, Andersen ML, Svensson J, Bergholdt R, Pociot F, Hougaard P, de Beaufort C, Castaño L, Mortensen HB, Lernmark A, Hansen L; Hvidoere Study Group on Childhood Diabetes. Nielsen LB, et al. Autoimmunity. 2011 Dec;44(8):616-23. doi: 10.3109/08916934.2011.576724. Epub 2011 May 23. Autoimmunity. 2011. PMID: 21604969 - Zn(2+)-transporter-8: a dual role in diabetes.
Chistiakov DA, Voronova NV. Chistiakov DA, et al. Biofactors. 2009 Jul-Aug;35(4):356-63. doi: 10.1002/biof.49. Biofactors. 2009. PMID: 19655390 Review. - SLC30A8 mutations in type 2 diabetes.
Rutter GA, Chimienti F. Rutter GA, et al. Diabetologia. 2015 Jan;58(1):31-6. doi: 10.1007/s00125-014-3405-7. Epub 2014 Oct 7. Diabetologia. 2015. PMID: 25287711 Review.
Cited by
- Impact of Zinc Deficiency During Prenatal and/or Postnatal Life on Cardiovascular and Metabolic Diseases: Experimental and Clinical Evidence.
Mendes Garrido Abregú F, Caniffi C, Arranz CT, Tomat AL. Mendes Garrido Abregú F, et al. Adv Nutr. 2022 Jun 1;13(3):833-845. doi: 10.1093/advances/nmac012. Adv Nutr. 2022. PMID: 35167660 Free PMC article. Review. - The Play of Genes and Non-genetic Factors on Type 2 Diabetes.
Mambiya M, Shang M, Wang Y, Li Q, Liu S, Yang L, Zhang Q, Zhang K, Liu M, Nie F, Zeng F, Liu W. Mambiya M, et al. Front Public Health. 2019 Nov 19;7:349. doi: 10.3389/fpubh.2019.00349. eCollection 2019. Front Public Health. 2019. PMID: 31803711 Free PMC article. Review. - Lack of Association between SLC30A8 Variants and Type 2 Diabetes in Mexican American Families.
Kulkarni H, Mamtani M, Peralta JM, Diego V, Dyer TD, Goring H, Almasy L, Mahaney MC, Williams-Blangero S, Duggirala R, Curran JE, Blangero J. Kulkarni H, et al. J Diabetes Res. 2016;2016:6463214. doi: 10.1155/2016/6463214. Epub 2016 Nov 8. J Diabetes Res. 2016. PMID: 27896278 Free PMC article. - Plasma LncRNA-ATB, a Potential Biomarker for Diagnosis of Patients with Coal Workers' Pneumoconiosis: A Case-Control Study.
Ma J, Cui X, Rong Y, Zhou Y, Guo Y, Zhou M, Xiao L, Chen W. Ma J, et al. Int J Mol Sci. 2016 Aug 22;17(8):1367. doi: 10.3390/ijms17081367. Int J Mol Sci. 2016. PMID: 27556453 Free PMC article. - Genome-wide impact of hydrogen peroxide on maintenance DNA methylation in replicating cells.
Seddon AR, Liau Y, Pace PE, Miller AL, Das AB, Kennedy MA, Hampton MB, Stevens AJ. Seddon AR, et al. Epigenetics Chromatin. 2021 Mar 24;14(1):17. doi: 10.1186/s13072-021-00388-6. Epigenetics Chromatin. 2021. PMID: 33761969 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical