Toward the comprehensive understanding of the gut ecosystem via metabolomics-based integrated omics approach - PubMed (original) (raw)
Review
Toward the comprehensive understanding of the gut ecosystem via metabolomics-based integrated omics approach
Wanping Aw et al. Semin Immunopathol. 2015 Jan.
Abstract
Recent advances in DNA sequencing and mass spectrometry technologies have allowed us to collect more data on microbiome and metabolome to assess the influence of the gut microbiota on human health at a whole-systems level. Major advances in metagenomics and metabolomics technologies have shown that the gut microbiota contributes to host overall health status to a large extent. As such, the gut microbiota is often likened to a measurable and functional organ consisting of prokaryotic cells, which creates the unique gut ecosystem together with the host eukaryotic cells. In this review, we discuss in detail the relationship between gut microbiota and its metabolites like choline, bile acids, phenols, and short-chain fatty acids in the host health and etiopathogenesis of various pathological states such as multiple sclerosis, autism, obesity, diabetes, and chronic kidney disease. By integrating metagenomic and metabolomic information on a systems biology-wide approach, we would be better able to understand this interplay between gut microbiome and host metabolism. Integration of the microbiome, metatranscriptome, and metabolome information will pave the way toward an improved holistic understanding of the complex mammalian superorganism. Through the modeling of metabolic interactions between lifestyle, diet, and microbiota, integrated omics-based understanding of the gut ecosystem is the new avenue, providing exciting novel therapeutic approaches for optimal host health.
Similar articles
- An Integrated Outlook on the Metagenome and Metabolome of Intestinal Diseases.
Aw W, Fukuda S. Aw W, et al. Diseases. 2015 Nov 6;3(4):341-359. doi: 10.3390/diseases3040341. Diseases. 2015. PMID: 28943629 Free PMC article. Review. - A specific gut microbiota and metabolomic profiles shifts related to antidiabetic action: The similar and complementary antidiabetic properties of type 3 resistant starch from Canna edulis and metformin.
Zhang C, Ma S, Wu J, Luo L, Qiao S, Li R, Xu W, Wang N, Zhao B, Wang X, Zhang Y, Wang X. Zhang C, et al. Pharmacol Res. 2020 Sep;159:104985. doi: 10.1016/j.phrs.2020.104985. Epub 2020 Jun 3. Pharmacol Res. 2020. PMID: 32504839 - Intestinal MicrobiOMICS to define health and disease in human and mice.
Serino M, Chabo C, Burcelin R. Serino M, et al. Curr Pharm Biotechnol. 2012 Apr;13(5):746-58. doi: 10.2174/138920112799857567. Curr Pharm Biotechnol. 2012. PMID: 22122483 Review. - A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice.
Marcobal A, Kashyap PC, Nelson TA, Aronov PA, Donia MS, Spormann A, Fischbach MA, Sonnenburg JL. Marcobal A, et al. ISME J. 2013 Oct;7(10):1933-43. doi: 10.1038/ismej.2013.89. Epub 2013 Jun 6. ISME J. 2013. PMID: 23739052 Free PMC article. - Gut metabolome meets microbiome: A methodological perspective to understand the relationship between host and microbe.
Lamichhane S, Sen P, Dickens AM, Orešič M, Bertram HC. Lamichhane S, et al. Methods. 2018 Oct 1;149:3-12. doi: 10.1016/j.ymeth.2018.04.029. Epub 2018 Apr 30. Methods. 2018. PMID: 29715508 Review.
Cited by
- The Possible Role of the Microbiota-Gut-Brain-Axis in Autism Spectrum Disorder.
Srikantha P, Mohajeri MH. Srikantha P, et al. Int J Mol Sci. 2019 Apr 29;20(9):2115. doi: 10.3390/ijms20092115. Int J Mol Sci. 2019. PMID: 31035684 Free PMC article. Review. - The Microbiome and Sustainable Healthcare.
Dietert RR, Dietert JM. Dietert RR, et al. Healthcare (Basel). 2015 Mar 3;3(1):100-29. doi: 10.3390/healthcare3010100. Healthcare (Basel). 2015. PMID: 27417751 Free PMC article. Review. - 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses.
Zou Y, Xue W, Luo G, Deng Z, Qin P, Guo R, Sun H, Xia Y, Liang S, Dai Y, Wan D, Jiang R, Su L, Feng Q, Jie Z, Guo T, Xia Z, Liu C, Yu J, Lin Y, Tang S, Huo G, Xu X, Hou Y, Liu X, Wang J, Yang H, Kristiansen K, Li J, Jia H, Xiao L. Zou Y, et al. Nat Biotechnol. 2019 Feb;37(2):179-185. doi: 10.1038/s41587-018-0008-8. Epub 2019 Feb 4. Nat Biotechnol. 2019. PMID: 30718868 Free PMC article. - Development of the Korean Form of the Premonitory Urge for Tics Scale: A Reliability and Validity Study.
Kim M, Chung SK, Yang JC, Park JI, Nam SH, Park TW. Kim M, et al. Soa Chongsonyon Chongsin Uihak. 2020 Jul 1;31(3):146-153. doi: 10.5765/jkacap.200013. Soa Chongsonyon Chongsin Uihak. 2020. PMID: 32665758 Free PMC article. - Metabolic Syndrome: A Narrative Review from the Oxidative Stress to the Management of Related Diseases.
Martemucci G, Fracchiolla G, Muraglia M, Tardugno R, Dibenedetto RS, D'Alessandro AG. Martemucci G, et al. Antioxidants (Basel). 2023 Dec 8;12(12):2091. doi: 10.3390/antiox12122091. Antioxidants (Basel). 2023. PMID: 38136211 Free PMC article. Review.
References
- Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3698-703 - PubMed
- Science. 2013 Mar 1;339(6123):1084-8 - PubMed
- Behav Brain Res. 2011 Feb 2;217(1):47-54 - PubMed
- Nature. 2012 Feb 01;482(7384):179-85 - PubMed
- Science. 2013 Sep 6;341(6150):1241214 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials