Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells - PubMed (original) (raw)
doi: 10.1038/nbt.3102. Epub 2015 Jan 19.
Affiliations
- PMID: 25599176
- DOI: 10.1038/nbt.3102
Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
Florian Buettner et al. Nat Biotechnol. 2015 Feb.
Abstract
Recent technical developments have enabled the transcriptomes of hundreds of cells to be assayed in an unbiased manner, opening up the possibility that new subpopulations of cells can be found. However, the effects of potential confounding factors, such as the cell cycle, on the heterogeneity of gene expression and therefore on the ability to robustly identify subpopulations remain unclear. We present and validate a computational approach that uses latent variable models to account for such hidden factors. We show that our single-cell latent variable model (scLVM) allows the identification of otherwise undetectable subpopulations of cells that correspond to different stages during the differentiation of naive T cells into T helper 2 cells. Our approach can be used not only to identify cellular subpopulations but also to tease apart different sources of gene expression heterogeneity in single-cell transcriptomes.
Comment in
- Kindred cells among the crowd.
Nawy T. Nawy T. Nat Methods. 2015 Mar;12(3):170-1. doi: 10.1038/nmeth.3307. Nat Methods. 2015. PMID: 25879100 No abstract available. - The contribution of cell cycle to heterogeneity in single-cell RNA-seq data.
McDavid A, Finak G, Gottardo R. McDavid A, et al. Nat Biotechnol. 2016 Jun 9;34(6):591-3. doi: 10.1038/nbt.3498. Nat Biotechnol. 2016. PMID: 27281413 Free PMC article. No abstract available. - Reply to The contribution of cell cycle to heterogeneity in single-cell RNA-seq data.
[No authors listed] [No authors listed] Nat Biotechnol. 2016 May 6;34(6):593-5. doi: 10.1038/nbt.3607. Nat Biotechnol. 2016. PMID: 27281414 No abstract available.
Similar articles
- f-scLVM: scalable and versatile factor analysis for single-cell RNA-seq.
Buettner F, Pratanwanich N, McCarthy DJ, Marioni JC, Stegle O. Buettner F, et al. Genome Biol. 2017 Nov 7;18(1):212. doi: 10.1186/s13059-017-1334-8. Genome Biol. 2017. PMID: 29115968 Free PMC article. - Constructing cell lineages from single-cell transcriptomes.
Chen J, Rénia L, Ginhoux F. Chen J, et al. Mol Aspects Med. 2018 Feb;59:95-113. doi: 10.1016/j.mam.2017.10.004. Epub 2017 Nov 26. Mol Aspects Med. 2018. PMID: 29107741 Review. - Single-cell messenger RNA sequencing reveals rare intestinal cell types.
Grün D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, Clevers H, van Oudenaarden A. Grün D, et al. Nature. 2015 Sep 10;525(7568):251-5. doi: 10.1038/nature14966. Epub 2015 Aug 19. Nature. 2015. PMID: 26287467 - Heterogeneous lineage marker expression in naive embryonic stem cells is mostly due to spontaneous differentiation.
Nair G, Abranches E, Guedes AM, Henrique D, Raj A. Nair G, et al. Sci Rep. 2015 Aug 21;5:13339. doi: 10.1038/srep13339. Sci Rep. 2015. PMID: 26292941 Free PMC article. - Cellular diversity and lineage trajectory: insights from mouse single cell transcriptomes.
Tam PPL, Ho JWK. Tam PPL, et al. Development. 2020 Jan 24;147(2):dev179788. doi: 10.1242/dev.179788. Development. 2020. PMID: 31980483 Review.
Cited by
- Separating measurement and expression models clarifies confusion in single-cell RNA sequencing analysis.
Sarkar A, Stephens M. Sarkar A, et al. Nat Genet. 2021 Jun;53(6):770-777. doi: 10.1038/s41588-021-00873-4. Epub 2021 May 24. Nat Genet. 2021. PMID: 34031584 Free PMC article. Review. - Inference of single-cell network using mutual information for scRNA-seq data analysis.
Chang LY, Hao TY, Wang WJ, Lin CY. Chang LY, et al. BMC Bioinformatics. 2024 Sep 5;25(Suppl 2):292. doi: 10.1186/s12859-024-05895-3. BMC Bioinformatics. 2024. PMID: 39237886 Free PMC article. - Pinpointing Cell Identity in Time and Space.
Savulescu AF, Jacobs C, Negishi Y, Davignon L, Mhlanga MM. Savulescu AF, et al. Front Mol Biosci. 2020 Aug 14;7:209. doi: 10.3389/fmolb.2020.00209. eCollection 2020. Front Mol Biosci. 2020. PMID: 32923457 Free PMC article. - Latent Factor Modeling of scRNA-Seq Data Uncovers Dysregulated Pathways in Autoimmune Disease Patients.
Palla G, Ferrero E. Palla G, et al. iScience. 2020 Aug 12;23(9):101451. doi: 10.1016/j.isci.2020.101451. eCollection 2020 Sep 25. iScience. 2020. PMID: 32853994 Free PMC article. - Batch-effect correction in single-cell RNA sequencing data using JIVE.
Hastings J, Lee D, O'Connell MJ. Hastings J, et al. Bioinform Adv. 2024 Sep 13;4(1):vbae134. doi: 10.1093/bioadv/vbae134. eCollection 2024. Bioinform Adv. 2024. PMID: 39387061 Free PMC article.
References
- Stem Cell Reports. 2013 Dec 05;1(6):532-44 - PubMed
- Nat Rev Genet. 2015 Mar;16(3):133-45 - PubMed
- Anal Chem. 2003 Sep 15;75(18):4718-23 - PubMed
- Anal Chem. 2003 Jul 15;75(14):3581-6 - PubMed
- Cell Stem Cell. 2010 May 7;6(5):468-78 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases