Microsatellite instability: an update - PubMed (original) (raw)

Review

. 2015 Jun;89(6):899-921.

doi: 10.1007/s00204-015-1474-0. Epub 2015 Feb 22.

Affiliations

Review

Microsatellite instability: an update

Hiroyuki Yamamoto et al. Arch Toxicol. 2015 Jun.

Abstract

Deficient DNA mismatch repair (MMR) results in a strong mutator phenotype known as microsatellite instability (MSI), which is a hallmark of Lynch syndrome-associated cancers. MSI is characterized by length alterations within simple repeated sequences that are called microsatellites. Lynch syndrome is primarily caused by mutations in the MMR genes, mainly MLH1 and MSH2, and less frequently in MSH6, and rarely PMS2, and large genomic rearrangements account for 5-20 % of all mutations. Germ line hemiallelic methylations of MLH1 or MSH2 are termed as epimutations and have been identified as causative of Lynch syndrome. Moreover, germ line 3' deletions of EPCAM gene is involved in MSH2 methylation. MSI is also observed in about 15 % of sporadic colorectal cancer (CRC), gastric cancer (GC), and endometrial cancer (EC), and at lower frequencies in other cancers, often in association with hypermethylation of the MLH1 gene. Trimethylation of histone H3 on Lys36 (H3K36 me3) is an epigenetic histone mark that was required for DNA MMR in vivo. Thus, mutations in the H3K36 trimethyltransferase SETD2 have been reported as a potential cause of MSI. Genetic, epigenetic, and transcriptomic differences have been identified between cancers with and without MSI. Recent comprehensive molecular characterizations of CRC, EC, and GC by The Cancer Genome Atlas indicate that MSI+ cancers are distinct biological entities. The BRAF V600E mutation is specifically associated with sporadic MSI+ CRCs with methylated MLH1, but is not associated with Lynch syndrome-related CRCs. Accumulating evidence indicates a role of interactions between MSI and microRNA (miRNA) in the pathogenesis of MSI-positive (MSI+) cancer. As another new mechanism underlying MSI, overexpression of miR-155 or miR-21 has been shown to downregulate the expression of the MMR genes. Gene targets of frameshift mutations caused by MSI are involved in various cellular functions, including DNA repair (MSH3 and MSH6), cell signaling (TGFBR2 and ACVR2A), apoptosis (BAX), epigenetic regulation (HDAC2 and ARID1A), and miRNA processing (TARBP2 and XPO5), and a subset of MSI+ CRCs reportedly shows the mutated miRNA machinery phenotype. Moreover, microsatellite repeats in miRNA genes, such as hsa-miR-1273c, may be novel MSI targets for CRC, and mutations in noncoding regulatory regions of MRE11, BAX (BaxΔ2), and HSP110 (HSP110ΔE9) may affect the efficiency of chemotherapy. Thus, analyses of MSI and its related molecular alterations in cancers are increasingly relevant in clinical settings, and MSI is a useful screening marker for identifying patients with Lynch syndrome and a prognostic factor for chemotherapeutic interventions. In this review, we summarize recent advances in the pathogenesis of MSI and focus on genome-wide analyses that indicate the potential use of MSI and related alterations as biomarkers and novel therapeutic targets.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources