Diffusion maps for high-dimensional single-cell analysis of differentiation data - PubMed (original) (raw)
. 2015 Sep 15;31(18):2989-98.
doi: 10.1093/bioinformatics/btv325. Epub 2015 May 21.
Affiliations
- PMID: 26002886
- DOI: 10.1093/bioinformatics/btv325
Diffusion maps for high-dimensional single-cell analysis of differentiation data
Laleh Haghverdi et al. Bioinformatics. 2015.
Abstract
Motivation: Single-cell technologies have recently gained popularity in cellular differentiation studies regarding their ability to resolve potential heterogeneities in cell populations. Analyzing such high-dimensional single-cell data has its own statistical and computational challenges. Popular multivariate approaches are based on data normalization, followed by dimension reduction and clustering to identify subgroups. However, in the case of cellular differentiation, we would not expect clear clusters to be present but instead expect the cells to follow continuous branching lineages.
Results: Here, we propose the use of diffusion maps to deal with the problem of defining differentiation trajectories. We adapt this method to single-cell data by adequate choice of kernel width and inclusion of uncertainties or missing measurement values, which enables the establishment of a pseudotemporal ordering of single cells in a high-dimensional gene expression space. We expect this output to reflect cell differentiation trajectories, where the data originates from intrinsic diffusion-like dynamics. Starting from a pluripotent stage, cells move smoothly within the transcriptional landscape towards more differentiated states with some stochasticity along their path. We demonstrate the robustness of our method with respect to extrinsic noise (e.g. measurement noise) and sampling density heterogeneities on simulated toy data as well as two single-cell quantitative polymerase chain reaction datasets (i.e. mouse haematopoietic stem cells and mouse embryonic stem cells) and an RNA-Seq data of human pre-implantation embryos. We show that diffusion maps perform considerably better than Principal Component Analysis and are advantageous over other techniques for non-linear dimension reduction such as t-distributed Stochastic Neighbour Embedding for preserving the global structures and pseudotemporal ordering of cells.
Availability and implementation: The Matlab implementation of diffusion maps for single-cell data is available at https://www.helmholtz-muenchen.de/icb/single-cell-diffusion-map.
Contact: fbuettner.phys@gmail.com, fabian.theis@helmholtz-muenchen.de
Supplementary information: Supplementary data are available at Bioinformatics online.
© The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Similar articles
- Model-based branching point detection in single-cell data by K-branches clustering.
Chlis NK, Wolf FA, Theis FJ. Chlis NK, et al. Bioinformatics. 2017 Oct 15;33(20):3211-3219. doi: 10.1093/bioinformatics/btx325. Bioinformatics. 2017. PMID: 28582478 Free PMC article. - destiny: diffusion maps for large-scale single-cell data in R.
Angerer P, Haghverdi L, Büttner M, Theis FJ, Marr C, Buettner F. Angerer P, et al. Bioinformatics. 2016 Apr 15;32(8):1241-3. doi: 10.1093/bioinformatics/btv715. Epub 2015 Dec 14. Bioinformatics. 2016. PMID: 26668002 - Diffusion pseudotime robustly reconstructs lineage branching.
Haghverdi L, Büttner M, Wolf FA, Buettner F, Theis FJ. Haghverdi L, et al. Nat Methods. 2016 Oct;13(10):845-8. doi: 10.1038/nmeth.3971. Epub 2016 Aug 29. Nat Methods. 2016. PMID: 27571553 - Establishing the human naïve pluripotent state.
Manor YS, Massarwa R, Hanna JH. Manor YS, et al. Curr Opin Genet Dev. 2015 Oct;34:35-45. doi: 10.1016/j.gde.2015.07.005. Epub 2015 Aug 24. Curr Opin Genet Dev. 2015. PMID: 26291026 Review. - Advancing haematopoietic stem and progenitor cell biology through single-cell profiling.
Hamey FK, Nestorowa S, Wilson NK, Göttgens B. Hamey FK, et al. FEBS Lett. 2016 Nov;590(22):4052-4067. doi: 10.1002/1873-3468.12231. Epub 2016 Jun 21. FEBS Lett. 2016. PMID: 27259698 Review.
Cited by
- Fast and accurate single-cell RNA-seq analysis by clustering of transcript-compatibility counts.
Ntranos V, Kamath GM, Zhang JM, Pachter L, Tse DN. Ntranos V, et al. Genome Biol. 2016 May 26;17(1):112. doi: 10.1186/s13059-016-0970-8. Genome Biol. 2016. PMID: 27230763 Free PMC article. - Retinoic acid signaling is critical during the totipotency window in early mammalian development.
Iturbide A, Ruiz Tejada Segura ML, Noll C, Schorpp K, Rothenaigner I, Ruiz-Morales ER, Lubatti G, Agami A, Hadian K, Scialdone A, Torres-Padilla ME. Iturbide A, et al. Nat Struct Mol Biol. 2021 Jun;28(6):521-532. doi: 10.1038/s41594-021-00590-w. Epub 2021 May 27. Nat Struct Mol Biol. 2021. PMID: 34045724 Free PMC article. - De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data.
Grün D, Muraro MJ, Boisset JC, Wiebrands K, Lyubimova A, Dharmadhikari G, van den Born M, van Es J, Jansen E, Clevers H, de Koning EJP, van Oudenaarden A. Grün D, et al. Cell Stem Cell. 2016 Aug 4;19(2):266-277. doi: 10.1016/j.stem.2016.05.010. Epub 2016 Jun 23. Cell Stem Cell. 2016. PMID: 27345837 Free PMC article. - Unpaired data empowers association tests.
Gong M, Liu P, Sciurba FC, Stojanov P, Tao D, Tseng GC, Zhang K, Batmanghelich K. Gong M, et al. Bioinformatics. 2021 May 5;37(6):785-792. doi: 10.1093/bioinformatics/btaa886. Bioinformatics. 2021. PMID: 33070196 Free PMC article. - Single-Cell Transcriptomes Distinguish Stem Cell State Changes and Lineage Specification Programs in Early Mammary Gland Development.
Giraddi RR, Chung CY, Heinz RE, Balcioglu O, Novotny M, Trejo CL, Dravis C, Hagos BM, Mehrabad EM, Rodewald LW, Hwang JY, Fan C, Lasken R, Varley KE, Perou CM, Wahl GM, Spike BT. Giraddi RR, et al. Cell Rep. 2018 Aug 7;24(6):1653-1666.e7. doi: 10.1016/j.celrep.2018.07.025. Cell Rep. 2018. PMID: 30089273 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical