Generating Effective Models and Parameters for RNA Genetic Circuits - PubMed (original) (raw)
. 2015 Aug 21;4(8):914-26.
doi: 10.1021/acssynbio.5b00077. Epub 2015 Jul 2.
Affiliations
- PMID: 26046393
- DOI: 10.1021/acssynbio.5b00077
Free article
Generating Effective Models and Parameters for RNA Genetic Circuits
Chelsea Y Hu et al. ACS Synth Biol. 2015.
Free article
Abstract
RNA genetic circuitry is emerging as a powerful tool to control gene expression. However, little work has been done to create a theoretical foundation for RNA circuit design. A prerequisite to this is a quantitative modeling framework that accurately describes the dynamics of RNA circuits. In this work, we develop an ordinary differential equation model of transcriptional RNA genetic circuitry, using an RNA cascade as a test case. We show that parameter sensitivity analysis can be used to design a set of four simple experiments that can be performed in parallel using rapid cell-free transcription-translation (TX-TL) reactions to determine the 13 parameters of the model. The resulting model accurately recapitulates the dynamic behavior of the cascade, and can be easily extended to predict the function of new cascade variants that utilize new elements with limited additional characterization experiments. Interestingly, we show that inconsistencies between model predictions and experiments led to the model-guided discovery of a previously unknown maturation step required for RNA regulator function. We also determine circuit parameters in two different batches of TX-TL, and show that batch-to-batch variation can be attributed to differences in parameters that are directly related to the concentrations of core gene expression machinery. We anticipate the RNA circuit models developed here will inform the creation of computer aided genetic circuit design tools that can incorporate the growing number of RNA regulators, and that the parametrization method will find use in determining functional parameters of a broad array of natural and synthetic regulatory systems.
Keywords: RNA genetic circuitry; TX-TL; computer aided design; parametrization; sensitivity analysis.
Similar articles
- Characterizing and prototyping genetic networks with cell-free transcription-translation reactions.
Takahashi MK, Hayes CA, Chappell J, Sun ZZ, Murray RM, Noireaux V, Lucks JB. Takahashi MK, et al. Methods. 2015 Sep 15;86:60-72. doi: 10.1016/j.ymeth.2015.05.020. Epub 2015 May 27. Methods. 2015. PMID: 26022922 - Engineering a Functional Small RNA Negative Autoregulation Network with Model-Guided Design.
Hu CY, Takahashi MK, Zhang Y, Lucks JB. Hu CY, et al. ACS Synth Biol. 2018 Jun 15;7(6):1507-1518. doi: 10.1021/acssynbio.7b00440. Epub 2018 May 22. ACS Synth Biol. 2018. PMID: 29733627 - Rapidly characterizing the fast dynamics of RNA genetic circuitry with cell-free transcription-translation (TX-TL) systems.
Takahashi MK, Chappell J, Hayes CA, Sun ZZ, Kim J, Singhal V, Spring KJ, Al-Khabouri S, Fall CP, Noireaux V, Murray RM, Lucks JB. Takahashi MK, et al. ACS Synth Biol. 2015 May 15;4(5):503-15. doi: 10.1021/sb400206c. Epub 2014 Mar 28. ACS Synth Biol. 2015. PMID: 24621257 Free PMC article. - Computational methods in synthetic biology: towards computer-aided part design.
Wu K, Rao CV. Wu K, et al. Curr Opin Chem Biol. 2012 Aug;16(3-4):318-22. doi: 10.1016/j.cbpa.2012.05.003. Epub 2012 Jun 20. Curr Opin Chem Biol. 2012. PMID: 22727029 Review. - Effects of genetic variation on the E. coli host-circuit interface.
Cardinale S, Joachimiak MP, Arkin AP. Cardinale S, et al. Cell Rep. 2013 Jul 25;4(2):231-7. doi: 10.1016/j.celrep.2013.06.023. Epub 2013 Jul 18. Cell Rep. 2013. PMID: 23871664 Review.
Cited by
- Cell-Free Systems: A Proving Ground for Rational Biodesign.
Laohakunakorn N. Laohakunakorn N. Front Bioeng Biotechnol. 2020 Jul 24;8:788. doi: 10.3389/fbioe.2020.00788. eCollection 2020. Front Bioeng Biotechnol. 2020. PMID: 32793570 Free PMC article. - Point-of-care biomarker quantification enabled by sample-specific calibration.
McNerney MP, Zhang Y, Steppe P, Silverman AD, Jewett MC, Styczynski MP. McNerney MP, et al. Sci Adv. 2019 Sep 25;5(9):eaax4473. doi: 10.1126/sciadv.aax4473. eCollection 2019 Sep. Sci Adv. 2019. PMID: 31579825 Free PMC article. - Achieving large dynamic range control of gene expression with a compact RNA transcription-translation regulator.
Westbrook AM, Lucks JB. Westbrook AM, et al. Nucleic Acids Res. 2017 May 19;45(9):5614-5624. doi: 10.1093/nar/gkx215. Nucleic Acids Res. 2017. PMID: 28387839 Free PMC article. - Generative and predictive neural networks for the design of functional RNA molecules.
Riley AT, Robson JM, Green AA. Riley AT, et al. bioRxiv [Preprint]. 2023 Jul 14:2023.07.14.549043. doi: 10.1101/2023.07.14.549043. bioRxiv. 2023. PMID: 37503279 Free PMC article. Updated. Preprint. - Cell-Free Synthetic Biology Platform for Engineering Synthetic Biological Circuits and Systems.
Jeong D, Klocke M, Agarwal S, Kim J, Choi S, Franco E, Kim J. Jeong D, et al. Methods Protoc. 2019 May 14;2(2):39. doi: 10.3390/mps2020039. Methods Protoc. 2019. PMID: 31164618 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources