Curious kinetic behavior in silica polymorphs solves seifertite puzzle in shocked meteorite - PubMed (original) (raw)
Curious kinetic behavior in silica polymorphs solves seifertite puzzle in shocked meteorite
Tomoaki Kubo et al. Sci Adv. 2015.
Abstract
The presence of seifertite, one of the high-pressure polymorphs of silica, in achondritic shocked meteorites has been problematic because this phase is thermodynamically stable at more than ~100 GPa, unrealistically high-pressure conditions for the shock events in the early solar system. We conducted in situ x-ray diffraction measurements at high pressure and temperatures, and found that it metastably appears down to ~11 GPa owing to the clear difference in kinetics between the metastable seifertite and stable stishovite formations. The temperature-insensitive but time-sensitive kinetics for the formation of seifertite uniquely constrains that the critical shock duration and size of the impactor on differentiated parental bodies are at least ~0.01 s and ~50 to 100 m, respectively, from the presence of seifertite.
Keywords: high pressure; kinetics; metastable phase; seifertite; shocked meteorite; silica polymorphs.
Figures
Fig. 1. Changes of XRD patterns during cold compression followed by heating at high pressures in cristobalite.
(A) Transformations of α-cristobalite (cr) to cristobalite-II (II) and X-I (XI) by compression at room temperature. (B) Formation of seifertite (s) and stishovite (st) by heating at 23 to 25 GPa. au, gold pressure marker; *, graphite sample capsule.
Fig. 2. Pressure and temperature conditions for the seifertite and stishovite formations from cristobalite.
A datum point above 35 GPa was taken from the previous diamond-anvil cell experiment (10). II, cristobalite-II; XI, cristobalite X-I; s, seifertite; st, stishovite; co, coesite.
Fig. 3. Kinetics of the seifertite and stishovite formations.
(A) Temperature dependence of the rate constant k. Numbers indicate the pressure condition for each datum point. In the case of the stishovite formation, the pressure dependence was also observed. Activation energies and volumes are summarized in table S2. Results of the fitting are also shown. (B) TTT curves constructed on the basis of kinetic parameters determined in (A).
Fig. 4. Formation of high-pressure phases from cristobalite and plagioclase (20) on shock event time scales of 1 s (A) and 0.01 s (B).
Metastable phase boundaries of the cristobalite X-I (XI)–to–seifertite (s) transformation and the labradorite (Lb) amorphization are shown in thick solid and dotted lines, respectively. _P_-_T_-t kinetic boundaries for the seifertite and stishovite (st) formations in cristobalite are shown in red and blue lines, respectively. Those for the jadeite (Jd) and stishovite formations in plagioclase (Ab: albite) are shown in dotted black lines.
Similar articles
- Formation, preservation and extinction of high-pressure minerals in meteorites: temperature effects in shock metamorphism and shock classification.
Hu J, Sharp TG. Hu J, et al. Prog Earth Planet Sci. 2022;9(1):6. doi: 10.1186/s40645-021-00463-2. Epub 2022 Jan 5. Prog Earth Planet Sci. 2022. PMID: 35059281 Free PMC article. - Compressional pathways of α-cristobalite, structure of cristobalite X-I, and towards the understanding of seifertite formation.
Černok A, Marquardt K, Caracas R, Bykova E, Habler G, Liermann HP, Hanfland M, Mezouar M, Bobocioiu E, Dubrovinsky L. Černok A, et al. Nat Commun. 2017 Jun 7;8:15647. doi: 10.1038/ncomms15647. Nat Commun. 2017. PMID: 28589935 Free PMC article. - Discovery of seifertite in a shocked lunar meteorite.
Miyahara M, Kaneko S, Ohtani E, Sakai T, Nagase T, Kayama M, Nishido H, Hirao N. Miyahara M, et al. Nat Commun. 2013;4:1737. doi: 10.1038/ncomms2733. Nat Commun. 2013. PMID: 23612278 - Coesite and stishovite in a shocked lunar meteorite, Asuka-881757, and impact events in lunar surface.
Ohtani E, Ozawa S, Miyahara M, Ito Y, Mikouchi T, Kimura M, Arai T, Sato K, Hiraga K. Ohtani E, et al. Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):463-6. doi: 10.1073/pnas.1009338108. Epub 2010 Dec 27. Proc Natl Acad Sci U S A. 2011. PMID: 21187434 Free PMC article. - Discovery of natural MgSiO3 tetragonal garnet in a shocked chondritic meteorite.
Tomioka N, Miyahara M, Ito M. Tomioka N, et al. Sci Adv. 2016 Mar 25;2(3):e1501725. doi: 10.1126/sciadv.1501725. eCollection 2016 Mar. Sci Adv. 2016. PMID: 27051873 Free PMC article.
Cited by
- Submillisecond in situ X-ray diffraction measurement system with changing temperature and pressure using diamond anvil cells at BL10XU/SPring-8.
Kawaguchi-Imada S, Sinmyo R, Ohta K, Kawaguchi S, Kobayashi T. Kawaguchi-Imada S, et al. J Synchrotron Radiat. 2024 Mar 1;31(Pt 2):343-354. doi: 10.1107/S1600577523010974. Epub 2024 Feb 19. J Synchrotron Radiat. 2024. PMID: 38372672 Free PMC article. - Ultrahigh-pressure disordered eight-coordinated phase of Mg2GeO4: Analogue for super-Earth mantles.
Dutta R, Tracy SJ, Cohen RE, Miozzi F, Luo K, Yang J, Burnley PC, Smith D, Meng Y, Chariton S, Prakapenka VB, Duffy TS. Dutta R, et al. Proc Natl Acad Sci U S A. 2022 Feb 22;119(8):e2114424119. doi: 10.1073/pnas.2114424119. Proc Natl Acad Sci U S A. 2022. PMID: 35165195 Free PMC article. - Formation, preservation and extinction of high-pressure minerals in meteorites: temperature effects in shock metamorphism and shock classification.
Hu J, Sharp TG. Hu J, et al. Prog Earth Planet Sci. 2022;9(1):6. doi: 10.1186/s40645-021-00463-2. Epub 2022 Jan 5. Prog Earth Planet Sci. 2022. PMID: 35059281 Free PMC article. - Metastable silica high pressure polymorphs as structural proxies of deep Earth silicate melts.
Bykova E, Bykov M, Černok A, Tidholm J, Simak SI, Hellman O, Belov MP, Abrikosov IA, Liermann HP, Hanfland M, Prakapenka VB, Prescher C, Dubrovinskaia N, Dubrovinsky L. Bykova E, et al. Nat Commun. 2018 Nov 15;9(1):4789. doi: 10.1038/s41467-018-07265-z. Nat Commun. 2018. PMID: 30442940 Free PMC article. - Compressional pathways of α-cristobalite, structure of cristobalite X-I, and towards the understanding of seifertite formation.
Černok A, Marquardt K, Caracas R, Bykova E, Habler G, Liermann HP, Hanfland M, Mezouar M, Bobocioiu E, Dubrovinsky L. Černok A, et al. Nat Commun. 2017 Jun 7;8:15647. doi: 10.1038/ncomms15647. Nat Commun. 2017. PMID: 28589935 Free PMC article.
References
- Sharp T. G., El Goresy A., Wopenka B., Chen M., A post-stishovite SiO2 polymorph in the meteorite Shergotty: Implications for impact events. Science 284, 1511–1513 (1999). - PubMed
- El Goresy A., Dubrovinsky L., Sharp T. G., Saxena S. K., Chen M., A monoclinic post-stishovite polymorph of silica in the Shergotty meteorite. Science 288, 1632–1634 (2000). - PubMed
- El Goresy A., Dera P., Sharp T. G., Prewitt C. T., Chen M., Dubrovinsky L., Wopenka B., Boctor N. Z., Hemley R. J., Seifertite, a dense orthorhombic polymorph of silica from the Martian meteorites Shergotty and Zagami. Eur. J. Mineral. 20, 523–528 (2008).
LinkOut - more resources
Full Text Sources
Other Literature Sources