Melatonin, bone regulation and the ubiquitin-proteasome connection: A review - PubMed (original) (raw)
Review
. 2016 Jan 15:145:152-60.
doi: 10.1016/j.lfs.2015.12.031. Epub 2015 Dec 17.
Affiliations
- PMID: 26706287
- DOI: 10.1016/j.lfs.2015.12.031
Review
Melatonin, bone regulation and the ubiquitin-proteasome connection: A review
Jerry Vriend et al. Life Sci. 2016.
Abstract
Recently, investigators have shown that ubiquitin-proteasome-mediated protein degradation is critical in regulating the balance between bone formation and bone resorption. The major signal transduction pathways regulating bone formation are the RANK/NF-κB pathway and the Wnt/β-catenin pathway. These signal transduction pathways regulate the activity of mature osteoblasts and osteoclasts. In addition, the Wnt/β-catenin pathway is one of the major signaling pathways in the differentiation of osteoblasts. The ubiquitin ligases that are reported to be of major significance in regulating these pathways are the ubiquitin SCF(B-TrCP) ligase (which regulates activation of NF-κB via degradation of IkBα in osteoclasts, and regulates bone transcription factors via degradation of β-catenin), the Keap-Cul3-Rbx1 ligase (which regulates degradation of IkB kinase, Nrf2, and the antiapoptotic factor Bcl-2), and Smurf1. Also of significance in regulating osteoclastogenesis is the deubiquitinase, CYLD (cylindramatosis protein), which facilitates the separation of NF-κB from IkBα. The degradation of CYLD is also under the regulation of SCF(B-TrCP). Proteasome inhibitors influence the activity of mature osteoblasts and osteoclasts, but also modulate the differentiation of precursor cells into osteoblasts. Preclinical studies show that melatonin also influences bone metabolism by stimulating bone growth and inhibiting osteoclast activity. These actions of melatonin could be interpreted as being mediated by the ubiquitin ligases SCF(B-TrCP) and Keap-Cul3-Rbx, or as an inhibitory effect on proteasomes. Clinical trials of the use of melatonin in the treatment of bone disease, including multiple myeloma, using both continuous and intermittent modes of administration, are warranted.
Keywords: Bortezomib; Bortezomib (PubChem CID: 387447); Lactacystin (PubChem CID: 6610292); Melatonin (PubChem CID: 896); Osteoblasts; Osteoclasts; Parathyroid hormone; Rankl; SCF(B-TrCP).
Copyright © 2015 Elsevier Inc. All rights reserved.
Similar articles
- Proteasome inhibitors impair RANKL-induced NF-kappaB activity in osteoclast-like cells via disruption of p62, TRAF6, CYLD, and IkappaBalpha signaling cascades.
Ang E, Pavlos NJ, Rea SL, Qi M, Chai T, Walsh JP, Ratajczak T, Zheng MH, Xu J. Ang E, et al. J Cell Physiol. 2009 Aug;220(2):450-9. doi: 10.1002/jcp.21787. J Cell Physiol. 2009. PMID: 19365810 - Blocking of the Ubiquitin-Proteasome System Prevents Inflammation-Induced Bone Loss by Accelerating M-CSF Receptor c-Fms Degradation in Osteoclast Differentiation.
Lee K, Kim MY, Ahn H, Kim HS, Shin HI, Jeong D. Lee K, et al. Int J Mol Sci. 2017 Sep 25;18(10):2054. doi: 10.3390/ijms18102054. Int J Mol Sci. 2017. PMID: 28946669 Free PMC article. - Maslinic acid suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss by regulating RANKL-mediated NF-κB and MAPK signaling pathways.
Li C, Yang Z, Li Z, Ma Y, Zhang L, Zheng C, Qiu W, Wu X, Wang X, Li H, Tang J, Qian M, Li D, Wang P, Luo J, Liu M. Li C, et al. J Bone Miner Res. 2011 Mar;26(3):644-56. doi: 10.1002/jbmr.242. J Bone Miner Res. 2011. PMID: 20814972 - Melatonin as a proteasome inhibitor. Is there any clinical evidence?
Vriend J, Reiter RJ. Vriend J, et al. Life Sci. 2014 Oct 12;115(1-2):8-14. doi: 10.1016/j.lfs.2014.08.024. Epub 2014 Sep 16. Life Sci. 2014. PMID: 25219883 Review. - The Keap1-Nrf2-antioxidant response element pathway: a review of its regulation by melatonin and the proteasome.
Vriend J, Reiter RJ. Vriend J, et al. Mol Cell Endocrinol. 2015 Feb 5;401:213-20. doi: 10.1016/j.mce.2014.12.013. Epub 2014 Dec 17. Mol Cell Endocrinol. 2015. PMID: 25528518 Review.
Cited by
- Stress response in periodontal ligament stem cells may contribute to bisphosphonate‑associated osteonecrosis of the jaw: A gene expression array analysis.
Shi Y, Li M, Yu Y, Zhou Y, Zhang W, Hua H, Wang S. Shi Y, et al. Mol Med Rep. 2020 Sep;22(3):2043-2051. doi: 10.3892/mmr.2020.11276. Epub 2020 Jun 26. Mol Med Rep. 2020. PMID: 32705175 Free PMC article. - Melatonin promotes bone marrow mesenchymal stem cell osteogenic differentiation and prevents osteoporosis development through modulating circ_0003865 that sponges miR-3653-3p.
Wang X, Chen T, Deng Z, Gao W, Liang T, Qiu X, Gao B, Wu Z, Qiu J, Zhu Y, Chen Y, Liang Z, Zhou H, Xu C, Liang A, Su P, Peng Y, Huang D. Wang X, et al. Stem Cell Res Ther. 2021 Feb 25;12(1):150. doi: 10.1186/s13287-021-02224-w. Stem Cell Res Ther. 2021. PMID: 33632317 Free PMC article. - Ubiquitylomes Analysis of the Whole blood in Postmenopausal Osteoporosis Patients and healthy Postmenopausal Women.
Yang YR, Li CW, Wang JH, Huang XS, Yuan YF, Hu J, Liu K, Liang BC, Liu Z, Shi XL. Yang YR, et al. Orthop Surg. 2019 Dec;11(6):1187-1200. doi: 10.1111/os.12556. Epub 2019 Nov 25. Orthop Surg. 2019. PMID: 31762184 Free PMC article. - Neuroprotective Effects of Melatonin on Experimental Allergic Encephalomyelitis Mice Via Anti-Oxidative Stress Activity.
Long T, Yang Y, Peng L, Li Z. Long T, et al. J Mol Neurosci. 2018 Feb;64(2):233-241. doi: 10.1007/s12031-017-1022-x. Epub 2018 Feb 15. J Mol Neurosci. 2018. PMID: 29450696 - Melatonin and bone-related diseases: an updated mechanistic overview of current evidence and future prospects.
Bagherifard A, Hosseinzadeh A, Koosha F, Sheibani M, Karimi-Behnagh A, Reiter RJ, Mehrzadi S. Bagherifard A, et al. Osteoporos Int. 2023 Oct;34(10):1677-1701. doi: 10.1007/s00198-023-06836-1. Epub 2023 Jul 2. Osteoporos Int. 2023. PMID: 37393580 Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources