Dietary fiber and prebiotics and the gastrointestinal microbiota - PubMed (original) (raw)
Review
Dietary fiber and prebiotics and the gastrointestinal microbiota
Hannah D Holscher. Gut Microbes. 2017.
Abstract
The gastrointestinal microbiota has an important role in human health, and there is increasing interest in utilizing dietary approaches to modulate the composition and metabolic function of the microbial communities that colonize the gastrointestinal tract to improve health, and prevent or treat disease. One dietary strategy for modulating the microbiota is consumption of dietary fiber and prebiotics that can be metabolized by microbes in the gastrointestinal tract. Human alimentary enzymes are not able to digest most complex carbohydrates and plant polysaccharides. Instead, these polysaccharides are metabolized by microbes which generate short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate. This article reviews the current knowledge of the impact of fiber and prebiotic consumption on the composition and metabolic function of the human gastrointestinal microbiota, including the effects of physiochemical properties of complex carbohydrates, adequate intake and treatment dosages, and the phenotypic responses related to the composition of the human microbiota.
Keywords: fermentation; human microbiome; non-digestible carbohydrate; short-chain fatty acids.
Similar articles
- Liberated bioactive bound phenolics during in vitro gastrointestinal digestion and colonic fermentation boost the prebiotic effects of triticale insoluble dietary fiber.
Hou C, Zhao L, Ji M, Yu J, Di Y, Liu Q, Zhang Z, Sun L, Liu X, Wang Y. Hou C, et al. Food Chem. 2024 Nov 1;457:140124. doi: 10.1016/j.foodchem.2024.140124. Epub 2024 Jun 18. Food Chem. 2024. PMID: 38908239 - Prebiotics and Community Composition Influence Gas Production of the Human Gut Microbiota.
Yu X, Gurry T, Nguyen LTT, Richardson HS, Alm EJ. Yu X, et al. mBio. 2020 Sep 8;11(5):e00217-20. doi: 10.1128/mBio.00217-20. mBio. 2020. PMID: 32900799 Free PMC article. - Phytochemical Profile, Bioactivity, and Prebiotic Potential of Bound Phenolics Released from Rice Bran Dietary Fiber during in Vitro Gastrointestinal Digestion and Colonic Fermentation.
Zhang X, Zhang M, Dong L, Jia X, Liu L, Ma Y, Huang F, Zhang R. Zhang X, et al. J Agric Food Chem. 2019 Nov 20;67(46):12796-12805. doi: 10.1021/acs.jafc.9b06477. Epub 2019 Nov 11. J Agric Food Chem. 2019. PMID: 31659898 - Review on Bile Acids: Effects of the Gut Microbiome, Interactions with Dietary Fiber, and Alterations in the Bioaccessibility of Bioactive Compounds.
Singh J, Metrani R, Shivanagoudra SR, Jayaprakasha GK, Patil BS. Singh J, et al. J Agric Food Chem. 2019 Aug 21;67(33):9124-9138. doi: 10.1021/acs.jafc.8b07306. Epub 2019 Apr 23. J Agric Food Chem. 2019. PMID: 30969768 Review.
Cited by
- A Cohort Study of the Effects of Daily-Diet Water-Soluble Dietary Fiber on Butyric Acid-Producing Gut Microbiota in Middle-Aged and Older Adults in a Rural Region.
Sato S, Chinda D, Shimoyama T, Iino C, Kudo S, Sawada K, Mikami T, Nakaji S, Sakuraba H, Fukuda S. Sato S, et al. Microorganisms. 2022 Sep 10;10(9):1813. doi: 10.3390/microorganisms10091813. Microorganisms. 2022. PMID: 36144415 Free PMC article. - Gut microbiota remodeling: A promising therapeutic strategy to confront hyperuricemia and gout.
Wang Z, Li Y, Liao W, Huang J, Liu Y, Li Z, Tang J. Wang Z, et al. Front Cell Infect Microbiol. 2022 Aug 10;12:935723. doi: 10.3389/fcimb.2022.935723. eCollection 2022. Front Cell Infect Microbiol. 2022. PMID: 36034697 Free PMC article. Review. - Optimizing the Gut Microbiota for Individualized Performance Development in Elite Athletes.
Nolte S, Krüger K, Lenz C, Zentgraf K. Nolte S, et al. Biology (Basel). 2023 Dec 5;12(12):1491. doi: 10.3390/biology12121491. Biology (Basel). 2023. PMID: 38132317 Free PMC article. Review. - The Therapeutic Potential of the Specific Intestinal Microbiome (SIM) Diet on Metabolic Diseases.
Chu NHS, Chow E, Chan JCN. Chu NHS, et al. Biology (Basel). 2024 Jul 4;13(7):498. doi: 10.3390/biology13070498. Biology (Basel). 2024. PMID: 39056692 Free PMC article. Review. - Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids.
Kim CH. Kim CH. Cell Mol Immunol. 2021 May;18(5):1161-1171. doi: 10.1038/s41423-020-00625-0. Epub 2021 Apr 13. Cell Mol Immunol. 2021. PMID: 33850311 Free PMC article. Review.
References
- Jumpertz R, Le DS, Turnbaugh PJ, Trinidad C, Bogardus C, Gordon JI, Krakoff J. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr 2011; 94:58-65; PMID:21543530; http://dx.doi.org/10.3945/ajcn.110.010132 - DOI - PMC - PubMed
- Goldsmith JR, Sartor RB. The role of diet on intestinal microbiota metabolism: downstream impacts on host immune function and health, and therapeutic implications. J Gastroenterol 2014; 49:785-98; PMID:24652102; http://dx.doi.org/10.1007/s00535-014-0953-z - DOI - PMC - PubMed
- Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B, Feldstein AE, Britt EB, Fu X, Chung YM, et al.. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472:57-63; PMID:21475195; http://dx.doi.org/10.1038/nature09922 - DOI - PMC - PubMed
- Greenblum S, Turnbaugh PJ, Borenstein E. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci U S A 2012; 109:594-9; PMID:22184244; http://dx.doi.org/10.1073/pnas.1116053109 - DOI - PMC - PubMed
- Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490:55-60; PMID:23023125; http://dx.doi.org/10.1038/nature11450 - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical