α-Ketoadipic Acid and α-Aminoadipic Acid Cause Disturbance of Glutamatergic Neurotransmission and Induction of Oxidative Stress In Vitro in Brain of Adolescent Rats - PubMed (original) (raw)
. 2017 Aug;32(2):276-290.
doi: 10.1007/s12640-017-9735-8. Epub 2017 Apr 20.
Alexandre Umpierrez Amaral 1 2, Cristiane Cecatto 1, Alessandro Wajner 1, Kálita Dos Santos Godoy 1, Rafael Teixeira Ribeiro 1, Aline de Mello Gonçalves 1, Ângela Zanatta 1, Mateus Struecker da Rosa 1, Samanta Oliveira Loureiro 1, Carmen Regla Vargas 3 4, Guilhian Leipnitz 1 5, Diogo Onofre Gomes de Souza 1 5, Moacir Wajner 6 7 8
Affiliations
- PMID: 28429309
- DOI: 10.1007/s12640-017-9735-8
α-Ketoadipic Acid and α-Aminoadipic Acid Cause Disturbance of Glutamatergic Neurotransmission and Induction of Oxidative Stress In Vitro in Brain of Adolescent Rats
Janaína Camacho da Silva et al. Neurotox Res. 2017 Aug.
Abstract
Tissue accumulation of α-ketoadipic (KAA) and α-aminoadipic (AAA) acids is the biochemical hallmark of α-ketoadipic aciduria. This inborn error of metabolism is currently considered a biochemical phenotype with uncertain clinical significance. Considering that KAA and AAA are structurally similar to α-ketoglutarate and glutamate, respectively, we investigated the in vitro effects of these compounds on glutamatergic neurotransmission in the brain of adolescent rats. Bioenergetics and redox homeostasis were also investigated because they represent fundamental systems for brain development and functioning. We first observed that AAA significantly decreased glutamate uptake, whereas glutamate dehydrogenase activity was markedly inhibited by KAA in a competitive fashion. In addition, AAA and more markedly KAA induced generation of reactive oxygen and nitrogen species (increase of 2',7'-dichloroflurescein (DCFH) oxidation and nitrite/nitrate levels), lipid peroxidation (increase of malondialdehyde concentrations), and protein oxidation (increase of carbonyl formation and decrease of sulfhydryl content), besides decreasing the antioxidant defenses (reduced glutathione (GSH)) and aconitase activity. Furthermore, KAA-induced lipid peroxidation and GSH decrease were prevented by the antioxidants α-tocopherol, melatonin, and resveratrol, suggesting the involvement of reactive species in these effects. Noteworthy, the classical inhibitor of NMDA glutamate receptors MK-801 was not able to prevent KAA-induced and AAA-induced oxidative stress, determined by DCFH oxidation and GSH levels, making unlikely a secondary induction of oxidative stress through overstimulation of glutamate receptors. In contrast, KAA and AAA did not significantly change brain bioenergetic parameters. We speculate that disturbance of glutamatergic neurotransmission and redox homeostasis by KAA and AAA may play a role in those cases of α-ketoadipic aciduria that display neurological symptoms.
Keywords: Bioenergetics; Glutamatergic neurotransmission; Redox homeostasis; α-Aminoadipic acid; α-Ketoadipic acid; α-Ketoadipic aciduria.
Similar articles
- Experimental Evidence that In Vivo Intracerebral Administration of L-2-Hydroxyglutaric Acid to Neonatal Rats Provokes Disruption of Redox Status and Histopathological Abnormalities in the Brain.
Ribeiro RT, Zanatta Â, Amaral AU, Leipnitz G, de Oliveira FH, Seminotti B, Wajner M. Ribeiro RT, et al. Neurotox Res. 2018 Apr;33(3):681-692. doi: 10.1007/s12640-018-9874-6. Epub 2018 Feb 6. Neurotox Res. 2018. PMID: 29411290 - S-Adenosylmethionine Promotes Oxidative Stress and Decreases Na+, K+-ATPase Activity in Cerebral Cortex Supernatants of Adolescent Rats: Implications for the Pathogenesis of S-Adenosylhomocysteine Hydrolase Deficiency.
Zanatta Â, Cecatto C, Ribeiro RT, Amaral AU, Wyse AT, Leipnitz G, Wajner M. Zanatta Â, et al. Mol Neurobiol. 2018 Jul;55(7):5868-5878. doi: 10.1007/s12035-017-0804-z. Epub 2017 Nov 3. Mol Neurobiol. 2018. PMID: 29101646 - In vivo intracerebral administration of L-2-hydroxyglutaric acid provokes oxidative stress and histopathological alterations in striatum and cerebellum of adolescent rats.
da Rosa MS, João Ribeiro CA, Seminotti B, Teixeira Ribeiro R, Amaral AU, Coelho Dde M, de Oliveira FH, Leipnitz G, Wajner M. da Rosa MS, et al. Free Radic Biol Med. 2015 Jun;83:201-13. doi: 10.1016/j.freeradbiomed.2015.02.008. Epub 2015 Feb 17. Free Radic Biol Med. 2015. PMID: 25701435 - In vitro evidence that sulfite impairs glutamatergic neurotransmission and inhibits glutathione metabolism-related enzymes in rat cerebral cortex.
Parmeggiani B, Moura AP, Grings M, Bumbel AP, de Moura Alvorcem L, Tauana Pletsch J, Fernandes CG, Wyse AT, Wajner M, Leipnitz G. Parmeggiani B, et al. Int J Dev Neurosci. 2015 May;42:68-75. doi: 10.1016/j.ijdevneu.2015.03.005. Epub 2015 Mar 13. Int J Dev Neurosci. 2015. PMID: 25777939 - Disruption of redox homeostasis in cerebral cortex of developing rats by acylcarnitines accumulating in medium-chain acyl-CoA dehydrogenase deficiency.
Tonin AM, Grings M, Knebel LA, Zanatta Â, Moura AP, Ribeiro CA, Leipnitz G, Wajner M. Tonin AM, et al. Int J Dev Neurosci. 2012 Aug;30(5):383-90. doi: 10.1016/j.ijdevneu.2012.03.238. Epub 2012 Mar 27. Int J Dev Neurosci. 2012. PMID: 22472139
Cited by
- An in vitro assay of the effect of lysine oxidation end-product, α-aminoadipic acid, on the redox status and gene expression in probiotic Lactobacillus reuteri PL503.
Padilla P, Andrade MJ, Peña FJ, Rodríguez A, Estévez M. Padilla P, et al. Amino Acids. 2022 Apr;54(4):663-673. doi: 10.1007/s00726-021-03087-4. Epub 2021 Oct 17. Amino Acids. 2022. PMID: 34657206 Free PMC article. - Behavior, Neural Structure, and Metabolism in Adult Male Mice Exposed to Environmentally Relevant Doses of Di(2-ethylhexyl) Phthalate Alone or in a Phthalate Mixture.
Ducroq S, Duplus E, Penalva-Mousset L, Trivelloni F, L'honoré A, Chabat-Courrède C, Nemazanyy I, Grange-Messent V, Petropoulos I, Mhaouty-Kodja S. Ducroq S, et al. Environ Health Perspect. 2023 Jul;131(7):77008. doi: 10.1289/EHP11514. Epub 2023 Jul 17. Environ Health Perspect. 2023. PMID: 37458746 Free PMC article. - ATP8B1 Knockdown Activated the Choline Metabolism Pathway and Induced High-Level Intracellular REDOX Homeostasis in Lung Squamous Cell Carcinoma.
Zhang X, Zhang R, Liu P, Zhang R, Ning J, Ye Y, Yu W, Yu J. Zhang X, et al. Cancers (Basel). 2022 Feb 7;14(3):835. doi: 10.3390/cancers14030835. Cancers (Basel). 2022. PMID: 35159102 Free PMC article. - Identification of Metabolomic Markers in Frozen or Formalin-Fixed and Paraffin-Embedded Samples of Diffuse Glioma from Adults.
Chardin D, Jing L, Chazal-Ngo-Mai M, Guigonis JM, Rigau V, Goze C, Duffau H, Virolle T, Pourcher T, Burel-Vandenbos F. Chardin D, et al. Int J Mol Sci. 2023 Nov 24;24(23):16697. doi: 10.3390/ijms242316697. Int J Mol Sci. 2023. PMID: 38069019 Free PMC article. - Comparative Analysis of Serum Amino Acid Profiles in Patients with Myasthenia Gravis and Multiple Sclerosis.
Kośliński P, Rzepiński Ł, Koba M, Maciejek Z, Kowalewski M, Daghir-Wojtkowiak E. Kośliński P, et al. J Clin Med. 2024 Jul 12;13(14):4083. doi: 10.3390/jcm13144083. J Clin Med. 2024. PMID: 39064122 Free PMC article.
References
- Biochim Biophys Acta. 1974 Aug 9;356(3):276-87 - PubMed
- Arch Toxicol. 2007 Nov;81(11):769-76 - PubMed
- Methods Enzymol. 1994;233:357-63 - PubMed
- Clin Chim Acta. 1962 Sep;7:597-603 - PubMed
- J Inherit Metab Dis. 2008 Feb;31(1):44-54 - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources