A large planetary body inferred from diamond inclusions in a ureilite meteorite - PubMed (original) (raw)
A large planetary body inferred from diamond inclusions in a ureilite meteorite
Farhang Nabiei et al. Nat Commun. 2018.
Abstract
Planetary formation models show that terrestrial planets are formed by the accretion of tens of Moon- to Mars-sized planetary embryos through energetic giant impacts. However, relics of these large proto-planets are yet to be found. Ureilites are one of the main families of achondritic meteorites and their parent body is believed to have been catastrophically disrupted by an impact during the first 10 million years of the solar system. Here we studied a section of the Almahata Sitta ureilite using transmission electron microscopy, where large diamonds were formed at high pressure inside the parent body. We discovered chromite, phosphate, and (Fe,Ni)-sulfide inclusions embedded in diamond. The composition and morphology of the inclusions can only be explained if the formation pressure was higher than 20 GPa. Such pressures suggest that the ureilite parent body was a Mercury- to Mars-sized planetary embryo.
Conflict of interest statement
The authors declare no competing interests.
Figures
Fig. 1
Graphitization of diamond along twinning directions. a The high-angle annular dark-field (HAADF) STEM image shows two twinning regions indicated as twin 1 and twin 2. Twin 1 is intersecting with two inclusions (indicated by orange arrows) and graphitized, while twin 2 is purely diamond. b The graphite-diamond EELS map (from the dashed blue rectangle in panel a) indicates that the graphitization is confined to the twinning region and around the inclusions (red = graphite, blue = diamond)
Fig. 2
Inclusion trails imaged inside diamond fragments. a HAADF-STEM image from diamond segments with similar crystallographic orientation. Dashed yellow lines show the diamond–graphite boundaries. b High-magnification image corresponding to the green square in a. Diamond and inclusion trails are cut by a graphite band. The dashed orange line shows the direction of the inclusion trails
Fig. 3
Electron micrograph and compositional maps of diamond inclusions in ureilite. HAADF-STEM images (a, b, c, and d) and associated Fe and S elemental maps (e, f, g, and h) of inclusions in diamond. All chemical (EDX) maps show Fe (light blue) and S (red) distribution. Kamacite and troilite phases appear as light blue and reddish-pink respectively
Fig. 4
Electron micrograph and chemical map of an inclusion in a graphitized region. a Bright-field (BF) STEM image and b chemical (EDX) map from graphite growth in diamond matrix around an inclusion. Blue dashed lines indicate the diamond–graphite boundary. The yellow arrows point out the Fe–S-rich regions in graphite. Notice the clear rounded form of the inclusion in graphitized part indicating partial melting
Similar articles
- Impact shock origin of diamonds in ureilite meteorites.
Nestola F, Goodrich CA, Morana M, Barbaro A, Jakubek RS, Christ O, Brenker FE, Domeneghetti MC, Dalconi MC, Alvaro M, Fioretti AM, Litasov KD, Fries MD, Leoni M, Casati NPM, Jenniskens P, Shaddad MH. Nestola F, et al. Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25310-25318. doi: 10.1073/pnas.1919067117. Epub 2020 Sep 28. Proc Natl Acad Sci U S A. 2020. PMID: 32989146 Free PMC article. - Trachyandesitic volcanism in the early Solar System.
Bischoff A, Horstmann M, Barrat JA, Chaussidon M, Pack A, Herwartz D, Ward D, Vollmer C, Decker S. Bischoff A, et al. Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12689-92. doi: 10.1073/pnas.1404799111. Epub 2014 Aug 18. Proc Natl Acad Sci U S A. 2014. PMID: 25136108 Free PMC article. - Scenarios of giant planet formation and evolution and their impact on the formation of habitable terrestrial planets.
Morbidelli A. Morbidelli A. Philos Trans A Math Phys Eng Sci. 2014 Mar 24;372(2014):20130072. doi: 10.1098/rsta.2013.0072. Print 2014 Apr 28. Philos Trans A Math Phys Eng Sci. 2014. PMID: 24664911 - M stars as targets for terrestrial exoplanet searches and biosignature detection.
Scalo J, Kaltenegger L, Segura A, Fridlund M, Ribas I, Kulikov YN, Grenfell JL, Rauer H, Odert P, Leitzinger M, Selsis F, Khodachenko ML, Eiroa C, Kasting J, Lammer H. Scalo J, et al. Astrobiology. 2007 Feb;7(1):85-166. doi: 10.1089/ast.2006.0125. Astrobiology. 2007. PMID: 17407405 Review. - D/H ratios of the inner Solar System.
Hallis LJ. Hallis LJ. Philos Trans A Math Phys Eng Sci. 2017 May 28;375(2094):20150390. doi: 10.1098/rsta.2015.0390. Philos Trans A Math Phys Eng Sci. 2017. PMID: 28416726 Free PMC article. Review.
Cited by
- A diamond-bearing core-mantle boundary on Mercury.
Xu Y, Lin Y, Wu P, Namur O, Zhang Y, Charlier B. Xu Y, et al. Nat Commun. 2024 Jun 14;15(1):5061. doi: 10.1038/s41467-024-49305-x. Nat Commun. 2024. PMID: 38877015 Free PMC article. - Open questions on carbonaceous matter in meteorites.
Christ O, Nestola F, Alvaro M. Christ O, et al. Commun Chem. 2024 May 29;7(1):118. doi: 10.1038/s42004-024-01200-8. Commun Chem. 2024. PMID: 38811753 Free PMC article. - Sequential Lonsdaleite to Diamond Formation in Ureilite Meteorites via In Situ Chemical Fluid/Vapor Deposition.
Tomkins AG, Wilson NC, MacRae C, Salek A, Field MR, Brand HEA, Langendam AD, Stephen NR, Torpy A, Pintér Z, Jennings LA, McCulloch DG. Tomkins AG, et al. Proc Natl Acad Sci U S A. 2022 Sep 20;119(38):e2208814119. doi: 10.1073/pnas.2208814119. Epub 2022 Sep 12. Proc Natl Acad Sci U S A. 2022. PMID: 36095186 Free PMC article. - A Review of Binderless Polycrystalline Diamonds: Focus on the High-Pressure-High-Temperature Sintering Process.
Guignard J, Prakasam M, Largeteau A. Guignard J, et al. Materials (Basel). 2022 Mar 16;15(6):2198. doi: 10.3390/ma15062198. Materials (Basel). 2022. PMID: 35329649 Free PMC article. Review. - Graphite-Based Geothermometry on Almahata Sitta Ureilitic Meteorites.
Barbaro A, Domeneghetti MC, Goodrich CA, Meneghetti M, Litti L, Fioretti AM, Jenniskens P, Shaddad MH, Nestola F. Barbaro A, et al. Minerals (Basel). 2020 Nov;10(11):1005. doi: 10.3390/min10111005. Epub 2020 Nov 12. Minerals (Basel). 2020. PMID: 33717603 Free PMC article.
References
- Jenniskens P, et al. Almahata Sitta (=asteroid 2008 TC3) and the search for the ureilite parent body. Meteorit. Planet. Sci. 2010;45:1590–1617. doi: 10.1111/j.1945-5100.2010.01153.x. - DOI
- Bischoff A, Horstmann M, Pack A, Laubenstein M, Haberer S. Asteroid 2008 TC3—Almahata Sitta: a spectacular breccia containing many different ureilitic and chondritic lithologies. Meteorit. Planet. Sci. 2010;45:1638–1656. doi: 10.1111/j.1945-5100.2010.01108.x. - DOI
- Goodrich CA, et al. Origin and history of ureilitic material in the solar system: the view from asteroid 2008 TC3 and the Almahata Sitta meteorite. Meteorit. Planet. Sci. 2015;50:782–809. doi: 10.1111/maps.12401. - DOI
- Fukunaga K, Matsuda J, Nagao K, Miyamoto M, Ito K. Noble-gas enrichment in vapour-growth diamonds and the origin of diamonds in ureilites. Nature. 1987;328:141–143. doi: 10.1038/328141a0. - DOI
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous